异构图上的连接预测一

2024-05-27 00:28
文章标签 连接 预测 异构 图上

本文主要是介绍异构图上的连接预测一,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这里写目录标题

  • 异构图?
  • 处理数据:

异构图?

异构图:就是指节点与边类型不同的图。
连接预测:目的是预测图中两个节点之间是否存在一条边,或者是预测两个节点之间,在未来可能形成的连接。
eg:
节点:
研究人员A、研究人员B、研究人员C
论文P1、论文P2
机构I1
边关系:
研究人员A 写作 论文P1
研究人员B 写作 论文P1
研究人员C 写作 论文P2
论文P1 隶属于 机构I1
例如呢,我们想预测 在未来 A 与B 是否会合作写作论文呢?
或者是预测 B会不会加入机构l1呢?

处理数据:

代码展示,其中包括我其中遇到的困惑。

"""
MoviesLens数据集:描述了MoviesLens的评分以及标记活动。
该数据集包括600多个用户对9000多部电影的10万个评分。
使用该数据集生成两种节点类型: 分别保存电影  和 用户的数据,
以及一种连接用户和电影的边缘类型,表示用户是否对特定电影进行了评级关系。
最后,链接预测任务 尝试预测缺失的评分,可以用于向用户推荐新电影。"""import torch
import os
import pandas as pd
from torch_geometric.data import HeteroData
import torch_geometric.transforms as T
# 电影
movies_path = './data/ml-latest-small/movies.csv'
# 评分
ratings_path = './data/ml-latest-small/ratings.csv'# 在处理数据之前肯定得先知道csv中的数据格式
# print('movies.csv')
# print('movies.csv:')
# print('===========')
# print(pd.read_csv(movies_path)[["movieId", "genres"]].head(10))
# print()
# print('ratings.csv:')
# print('============')
# print(pd.read_csv(ratings_path)[["userId", "movieId"]].head(10))# 加载数据,movieId 作为索引列
movies_df = pd.read_csv(movies_path,index_col='movieId')
# data = {
#     'movieId': [1, 2, 3],
#     'title': ['Toy Story', 'Jumanji', 'Grumpier Old Men'],
#     'genres': ['Adventure|Animation|Children|Comedy|Fantasy',
#                'Adventure|Children|Fantasy',
#                'Comedy|Romance']
# }
# 执行下方这行代码,作用就是按照 | 进行分割,且使用one-hot 编码
# 输出:   Adventure  Animation  Children  Comedy  Fantasy  Romance
# 0          1          1         1       1        1        0
# 1          1          0         1       0        1        0
# 2          0          0         0       1        0        1
genres = movies_df['genres'].str.get_dummies('|')
# print(genres[["Action", "Adventure", "Drama", "Horror"]].head())
# (9742, 20) 9742部电影,20种体裁
# print(genres.values.shape)
# 将genres作为电影的输入特征
movie_feat = torch.from_numpy(genres.values).to(torch.float)
assert movie_feat.size() == (9742,20)# 同理对评分进行处理
ratings_df = pd.read_csv(ratings_path)# 提取出每个用户的id
"""
ratings_data = {'userId': [10, 20, 10, 30, 20, 40, 30, 50],'movieId': [101, 101, 102, 103, 104, 105, 106, 107],'rating': [3.5, 4.0, 2.5, 5.0, 4.0, 3.0, 4.5, 2.0]
}
"""
# unique_user_id = ([10, 20, 30, 40, 50])
unique_user_id = ratings_df['userId'].unique()
# 创建映射表
"""userId  mappedID
0      10         0
1      20         1
2      30         2
3      40         3
4      50         4
"""
unique_user_id = pd.DataFrame(data={'userId': unique_user_id,'mappedID':pd.RangeIndex(len(unique_user_id))
})# 同理,对电影进行相同处理
unique_movie_id = ratings_df['movieId'].unique()
unique_movie_id = pd.DataFrame(data={'movieId':unique_movie_id,'mappedID':pd.RangeIndex(len(unique_movie_id))
})# 获取user和movie的原始Id和映射ID
# 下方这代码,不就是将评分表种的原始id与获取的映射id进行映射而已吗
ratings_user_id = pd.merge(ratings_df['userId'],unique_user_id,left_on='userId',right_on='userId',how='left')
ratings_user_id = torch.from_numpy(ratings_user_id['mappedID'].values)ratings_movie_id = pd.merge(ratings_df['movieId'], unique_movie_id,left_on='movieId', right_on='movieId', how='left')
ratings_movie_id = torch.from_numpy(ratings_movie_id['mappedID'].values)# 构造’edge_index'
# 在这里,你肯定会有这个疑惑?
# 为啥能那么刚好,例如用户id为0的,刚好就是评论10号电影呢?
# 其实在一开始,所有的数据都是安排好的
#  'userId': [1, 2, 1, 3, 2, 4, 3, 5],
#    'movieId': [101, 101, 102, 103, 104, 105, 106, 107],
#    'rating': [3.5, 4.0, 2.5, 5.0, 4.0, 3.0, 4.5, 2.0]
# 是不是一一对应呢?只是将userid和movieid转变为对应的mappedid而已
# 例如:userid:[0, 1, 0, 2, 1, 3, 2, 4]
#      movieid:[0, 0, 1, 2, 3, 4, 5, 6]
edge_index_user_to_movie = torch.stack([ratings_user_id,ratings_movie_id],dim=0)
assert edge_index_user_to_movie.size() == (2,100836)
"""
tensor([[   0,    0,    0,  ...,  609,  609,  609],[   0,    1,    2,  ..., 3121, 1392, 2873]])
"""
# print(edge_index_user_to_movie)# 到现在,完成了数据的处理
# 初始化HeterData 对象。
data = HeteroData()# 保存节点索引
data['user'].node_id = torch.arange(len(unique_user_id))
data['movie'].node_id = torch.arange(len(movies_df))# 添加节点特征和边索引
data['movie'].x = movie_feat  # 电影的体裁作为节点特征,因为每个电影可能会有多个体裁
data['user','rates','movie'].edge_index =edge_index_user_to_movie# 添加反向边,使得GNN能够在两个方向上传递消息,那不就是成为无向图咯
data = T.ToUndirected()(data)print(data)
assert data.node_types == ["user", "movie"]
assert data.edge_types == [("user", "rates", "movie"),("movie", "rev_rates", "user")]assert data["user"].num_nodes == 610
assert data["user"].num_features == 0
assert data["movie"].num_nodes == 9742
assert data["movie"].num_features == 20assert data["user", "rates", "movie"].num_edges == 100836
assert data["movie", "rev_rates", "user"].num_edges == 100836

这篇关于异构图上的连接预测一的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1006014

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏

Mac电脑如何通过 IntelliJ IDEA 远程连接 MySQL

《Mac电脑如何通过IntelliJIDEA远程连接MySQL》本文详解Mac通过IntelliJIDEA远程连接MySQL的步骤,本文通过图文并茂的形式给大家介绍的非常详细,感兴趣的朋友跟... 目录MAC电脑通过 IntelliJ IDEA 远程连接 mysql 的详细教程一、前缀条件确认二、打开 ID

Go语言连接MySQL数据库执行基本的增删改查

《Go语言连接MySQL数据库执行基本的增删改查》在后端开发中,MySQL是最常用的关系型数据库之一,本文主要为大家详细介绍了如何使用Go连接MySQL数据库并执行基本的增删改查吧... 目录Go语言连接mysql数据库准备工作安装 MySQL 驱动代码实现运行结果注意事项Go语言执行基本的增删改查准备工作

python连接sqlite3简单用法完整例子

《python连接sqlite3简单用法完整例子》SQLite3是一个内置的Python模块,可以通过Python的标准库轻松地使用,无需进行额外安装和配置,:本文主要介绍python连接sqli... 目录1. 连接到数据库2. 创建游标对象3. 创建表4. 插入数据5. 查询数据6. 更新数据7. 删除

在 Spring Boot 中连接 MySQL 数据库的详细步骤

《在SpringBoot中连接MySQL数据库的详细步骤》本文介绍了SpringBoot连接MySQL数据库的流程,添加依赖、配置连接信息、创建实体类与仓库接口,通过自动配置实现数据库操作,... 目录一、添加依赖二、配置数据库连接三、创建实体类四、创建仓库接口五、创建服务类六、创建控制器七、运行应用程序八

解决hive启动时java.net.ConnectException:拒绝连接的问题

《解决hive启动时java.net.ConnectException:拒绝连接的问题》Hadoop集群连接被拒,需检查集群是否启动、关闭防火墙/SELinux、确认安全模式退出,若问题仍存,查看日志... 目录错误发生原因解决方式1.关闭防火墙2.关闭selinux3.启动集群4.检查集群是否正常启动5.

在Linux系统上连接GitHub的方法步骤(适用2025年)

《在Linux系统上连接GitHub的方法步骤(适用2025年)》在2025年,使用Linux系统连接GitHub的推荐方式是通过SSH(SecureShell)协议进行身份验证,这种方式不仅安全,还... 目录步骤一:检查并安装 Git步骤二:生成 SSH 密钥步骤三:将 SSH 公钥添加到 github

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

C#连接SQL server数据库命令的基本步骤

《C#连接SQLserver数据库命令的基本步骤》文章讲解了连接SQLServer数据库的步骤,包括引入命名空间、构建连接字符串、使用SqlConnection和SqlCommand执行SQL操作,... 目录建议配合使用:如何下载和安装SQL server数据库-CSDN博客1. 引入必要的命名空间2.