Python动态可视化Cufflinks

2024-05-26 23:48

本文主要是介绍Python动态可视化Cufflinks,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、cufflinks介绍
    • 1.1 简介
    • 1.2 安装
    • 1.3 cufflinks包介绍
    • 1.4 使用方法
  • 二、cufflinks使用
    • 2.0 条形图 bar
    • 2.1 histogram直方图
    • 2.2 box箱型图
    • 2.3 scatter散点图
    • 2.4 lines 线图
    • 2.5 bubble气泡图
    • 2.6 3d 图
    • 2.7 scatter matrix 散点矩阵图
    • 2.8 subplots 子图
    • 2.9 shapes 形状图
  • 三、总结
  • 有趣的事,Python永远不会缺席

数据集和jupyter文件链接:https://pan.baidu.com/s/1O5ukYe41iAO9v_czHbs5CA
提取码:by2a

一、cufflinks介绍

1.1 简介

  学过Python数据分析的朋友都知道,在可视化的工具中,有很多优秀的三方库,比如matplotlibseabornplotlypyecharts等等。这些可视化库都有自己的特点,在实际应用中也广为大家使用。

  就像seaborn封装了matplotlib一样,cufflinks在plotly的基础上做了一进一步的包装,方法统一,参数配置简单。其次它还可以结合pandas的dataframe随意灵活地画图。可以把它形容为"pandas like visualization"。

1.2 安装

pip install cufflinks'''
Collecting cufflinksUsing cached https://files.pythonhosted.org/packages/5e/5a/db3d6523ee870ecc229008b209b6b21231397302de34f9c446929a41f027/cufflinks-0.16.tar.gz
...................................................................................
Successfully built cufflinks retrying
Installing collected packages: retrying, plotly, colorlover, cufflinks
Successfully installed colorlover-0.3.0 cufflinks-0.16 plotly-3.10.0 retrying-1.3.3
'''

1.3 cufflinks包介绍

import cufflinks as cfprint(cf.help())
Use 'cufflinks.help(figure)' to see the list of available parameters for the given figure.
Use 'DataFrame.iplot(kind=figure)' to plot the respective figure
Figures:barboxbubblebubble3dcandlechoropletdistplotheatmaphistogramohlcpieratioscatterscatter3dscattergeospreadsurfaceviolin
None

1.4 使用方法

  使用方法其实很简单,我总结一下,它的格式大致是这样的:

DataFrame.Figure.iplot
  • DataFrame:代表pandas的数据框;

  • Figure:代表我们上面看到的可绘制图形,比如bar、box、histogram等等;

  • iplot:代表绘制方法,其中有很多参数可以进行配置,调节符合你自己风格的可视化图形;

二、cufflinks使用

import pandas as pd
import numpy as np
import cufflinks as cf
# 如果使用online模式,那么生成的图形是有限制的。所以,我们这里先设置为offline模式,这样就避免了出现次数限制问题。
cf.set_config_file(offline=True)
df = pd.read_csv('./PimaIndiansdiabetes.csv')
print(df.shape)  #(768, 9)

2.0 条形图 bar

# 随机生成bar 条形图
df1=pd.DataFrame(np.random.rand(12, 4), columns=['a', 'b', 'c', 'd'

这篇关于Python动态可视化Cufflinks的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1005937

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核