leetcode 1631. 最小体力消耗路径 二分+BFS、并查集、Dijkstra算法

本文主要是介绍leetcode 1631. 最小体力消耗路径 二分+BFS、并查集、Dijkstra算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最小体力消耗路径

在这里插入图片描述
题目与水位上升的泳池中游泳类似

二分查找+BFS

首先,采用二分查找,确定一个体力值,再从左上角,进行BFS,查看能否到达右下角,如果不行,二分查找就往大的数字进行查找,如果可以,还要继续往小的数字进行查找,比如示例1,数字10肯定可以到达右下角,但不是最小的体力。

class Solution {
public:int dx[4] = { 0,0,-1,1 };int dy[4] = { -1,1,0,0 };int m, n;bool bfs(vector<vector<int>>& heights, vector<vector<int>> exist, int sub)//二分+BFS{exist[0][0] = 1;queue<pair<int, int>> q;q.emplace(0, 0);while (!q.empty()){auto [i, j] = q.front();q.pop();for (int k = 0; k < 4; ++k)//上下左右四个方向{int newi = i + dx[k];int newj = j + dy[k];if (newi >= 0 && newi < m && newj >= 0 && newj < n && !exist[newi][newj] && sub >= abs(heights[i][j] - heights[newi][newj])){exist[newi][newj] = 1;if (newi == m - 1 && newj == n - 1)//到达右下角{return true;}q.emplace(newi, newj);}}}return false;}int minimumEffortPath(vector<vector<int>>& heights){m = heights.size(), n = heights[0].size();vector<vector<int>> exist(m, vector<int>(n, 0));int begin = 0, end = 999999;//最大值,由题目给的边界值得出int result = 0;while (begin <= end){int mid = (begin + end) >> 1;if (bfs(heights, exist, mid)){result = mid;end = mid - 1;}else{begin = mid + 1;}}return result;}
};

二分+BFS一样适合于水位上升的题目。

二分+并查集
依然采用二分查找,确定一个值,只不过BFS换成了并查集

并查集:开辟一个数组,存储每个结点的父节点,当二分查找的某一个值,大于某两个点的差值,就将将其中一个点作为另外一个点的父节点,最后,如果可以到达右下角,那么,左上角的父节点就是右下角,此时,二分查找的值就可能是体力最小值。

这里用到了二维转一维

//并查集
class DSU
{
public:DSU(int n):parent(vector<int>(n, 0)){for (int i = 0; i < n; ++i)//父节点先初始化为自己{parent[i] = i;}}int Find(int pos){if (parent[pos] != pos)parent[pos] = Find(parent[pos]);//赋值为祖宗结点,减少搜索次数//return Find(parent[pos])parent[pos]为父节点return parent[pos];}void Union(int i, int j){parent[Find(i)] = Find(j);}bool check(int i, int j){return Find(i) == Find(j);}
private:vector<int> parent;
};class Solution {
public:int minimumEffortPath(vector<vector<int>>& heights){int m = heights.size(), n = heights[0].size();int result = 0;int begin = 0, end = 999999;//这里每次都得重新连接一遍,所以用二分,跟水池上升的游泳的题目相比while (begin <= end){int mid = (begin + end) >> 1;DSU dsu(m * n);//二维转一维for (int i = 0; i < m; ++i){for (int j = 0; j < n; ++j){if (i + 1 < m && abs(heights[i + 1][j] - heights[i][j]) <= mid)//下标方格可以到达{dsu.Union(i * n + j, (i + 1) * n + j);}if (j + 1 < n && abs(heights[i][j + 1] - heights[i][j]) <= mid)//右边方格可以到达{dsu.Union(i * n + j, i * n + j + 1);}}}if (dsu.check(0, m * n - 1)){result = mid;end = mid - 1;}else{begin = mid + 1;}}return result;}
};

在这里插入图片描述
相比水位上升的题目的并查集,这里的并查集并没有那么有趣,因为水位上升的题目的是采用从0遍历到最大值而不是二分查找,再对某一个值进行并查集。因为,由于水位上升的题目的数据是不重复的,所以可以采用哈希表记录每个值的位置,从0到最大值,只要在某个值,左上角和左下角已经连通,就是答案。比如示例一,分别使用哈希表的记录每个数字的位置,遍历水位,当水位为0时,没有可以连接的,但是水位为1时,可以连接0-》1,水位为2时,连接0-》2,水位为3时,连接1-》3,2-》3。如果这里采用二分的话,假如结果是10时,全部都被连通了,要往下查找更小的值的话,就要重新开辟parent数组。

如果,在最小体力消耗路径的题目依然采用遍历,而不是二分查找的话,虽然还是一个parent数组,当体力来到2,体力1可以连接的点已经连接好了,但是你还是避免不了两层循环遍历heights,查看哪里还可以连接,而不是像上面题目那样,直接哈希表确认2的位置,进行上下左右判断是否可以连接。

Dijkstra算法

开辟一个数组,记录源顶点(左上角)到达某一个点的最小体力
当来到一个新的顶点,消耗的体力比记载的小,就要存储起来,并且以这一个点为新起点,更新上下左右的体力值

//Dijkstra算法
class Solution {
public:int minimumEffortPath(vector<vector<int>>& heights){int m = heights.size(), n = heights[0].size();int INF = INT_MAX / 2;vector<int> dist(m * n, INF);//记录从源顶点,到达某个顶点的最小体力消耗dist[0] = 0;//顶点为0queue<tuple<int, int, int>> q;q.emplace(0, 0, 0);//分别表示最小体力差值,坐标while (!q.empty()){auto [physical, i, j] = q.front();q.pop();if (dist[i * n + j] < physical)//已经被处理过里,并且可以用更少的体力到达该位置continue;if (j + 1 < n){int nextPhysical = max(physical, abs(heights[i][j] - heights[i][j + 1]));//到达左边的方格需要的体力if (nextPhysical < dist[i * n + j + 1]){dist[i * n + j + 1] = nextPhysical;q.emplace(nextPhysical, i, j + 1);}}if (i + 1 < m){int nextPhysical = max(physical, abs(heights[i][j] - heights[i + 1][j]));//到达下边的方格需要的体力if (nextPhysical < dist[(i + 1) * n + j]){dist[(i + 1) * n + j] = nextPhysical;q.emplace(nextPhysical, i + 1, j);}}if (i - 1 >= 0){int nextPhysical = max(physical, abs(heights[i][j] - heights[i - 1][j]));//到达上边方格需要的体力if (nextPhysical < dist[(i - 1) * n + j]){dist[(i - 1) * n + j] = nextPhysical;q.emplace(nextPhysical, i - 1, j);}}if (j - 1 >= 0){int nextPhysical = max(physical, abs(heights[i][j] - heights[i][j - 1]));//到达左边方格需要的体力if (nextPhysical < dist[i * n + j - 1]){dist[i * n + j - 1] = nextPhysical;q.emplace(nextPhysical, i, j - 1);}}}return dist[m * n - 1];}
};

这篇关于leetcode 1631. 最小体力消耗路径 二分+BFS、并查集、Dijkstra算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1005082

相关文章

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

VSCode设置python SDK路径的实现步骤

《VSCode设置pythonSDK路径的实现步骤》本文主要介绍了VSCode设置pythonSDK路径的实现步骤,包括命令面板切换、settings.json配置、环境变量及虚拟环境处理,具有一定... 目录一、通过命令面板快速切换(推荐方法)二、通过 settings.json 配置(项目级/全局)三、

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)

《如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)》:本文主要介绍如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)问题,具有很好的参考价值,希望对大家有所帮助,如有... 目录先在你打算存放的地方建四个文件夹更改这四个路径就可以修改默认虚拟内存分页js文件的位置接下来从高级-

一文详解如何查看本地MySQL的安装路径

《一文详解如何查看本地MySQL的安装路径》本地安装MySQL对于初学者或者开发人员来说是一项基础技能,但在安装过程中可能会遇到各种问题,:本文主要介绍如何查看本地MySQL安装路径的相关资料,需... 目录1. 如何查看本地mysql的安装路径1.1. 方法1:通过查询本地服务1.2. 方法2:通过MyS

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Python如何调用指定路径的模块

《Python如何调用指定路径的模块》要在Python中调用指定路径的模块,可以使用sys.path.append,importlib.util.spec_from_file_location和exe... 目录一、sys.path.append() 方法1. 方法简介2. 使用示例3. 注意事项二、imp

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各