[7] CUDA之常量内存与纹理内存

2024-05-26 14:44
文章标签 内存 cuda 常量 纹理

本文主要是介绍[7] CUDA之常量内存与纹理内存,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CUDA之常量内存与纹理内存

1. 常量内存

  • NVIDIA GPU卡从逻辑上对用户提供了 64KB 的常量内存空间,可以用来存储内核执行期间所需要的恒定数据
  • 常量内存对一些特定情况下的小数据量的访问具有相比全局内存的额外优势,使用常量内存也一定程序上减少了对全局内存的带宽占用
  • 常量内存具有 cache 缓冲
  • 下边例举一个简单的程序进行 a * x + b 的数学运算
#include "stdio.h"
#include<iostream>
#include <cuda.h>
#include <cuda_runtime.h>
//Defining two constants
__constant__ int constant_f;
__constant__ int constant_g;
#define N	5
//Kernel function for using constant memory
__global__ void gpu_constant_memory(float *d_in, float *d_out) {//Thread index for current kernelint tid = threadIdx.x;	d_out[tid] = constant_f*d_in[tid] + constant_g;
}
  • 常量内存中的变量使用 __constant__ 关键字修饰
  • 使用 cudaMemcpyToSymbol 函数吧这些常量复制到内核执行所需要的常量内存中
  • 常量内存应合理使用,不然会增加程序执行时间
  • 主函数调用如下:
int main(void) {//Defining Arrays for hostfloat h_in[N], h_out[N];//Defining Pointers for devicefloat *d_in, *d_out;int h_f = 2;int h_g = 20;// allocate the memory on the cpucudaMalloc((void**)&d_in, N * sizeof(float));cudaMalloc((void**)&d_out, N * sizeof(float));//Initializing Arrayfor (int i = 0; i < N; i++) {h_in[i] = i;}//Copy Array from host to devicecudaMemcpy(d_in, h_in, N * sizeof(float), cudaMemcpyHostToDevice);//Copy constants to constant memorycudaMemcpyToSymbol(constant_f, &h_f, sizeof(int),0,cudaMemcpyHostToDevice);cudaMemcpyToSymbol(constant_g, &h_g, sizeof(int));//Calling kernel with one block and N threads per blockgpu_constant_memory << <1, N >> >(d_in, d_out);//Coping result back to host from device memorycudaMemcpy(h_out, d_out, N * sizeof(float), cudaMemcpyDeviceToHost);//Printing result on consoleprintf("Use of Constant memory on GPU \n");for (int i = 0; i < N; i++) {printf("The expression for input %f is %f\n", h_in[i], h_out[i]);}//Free up memorycudaFree(d_in);cudaFree(d_out);return 0;
}

在这里插入图片描述

2. 纹理内存

  • 纹理内存时另外一种当数据的访问具有特定的模式的时候能够加速程序执行,并减少显存带宽的制度存储器,像常量内存一样,它也在芯片内部被cache 缓冲
  • 该存储器最初是为了图像绘制而设计的,但也可以被用于通过计算
  • 当程序进行具有很大程序上的空间临近性的访存的时候,这种存储器变得非常高效。空间临近性的意思是:每个现成的读取位置都和其他现成的读取位置临近,这对那些需要处理4个临近的相关点和8个临近的点的图像处理应用非常有用。一种线程进行2D的平面空间临近性的访存的例子,可能会像下表:
    在这里插入图片描述
  • 通用的全局内存的cache将不能有效处理这种空间临近性,可能会导致进行大量的显存读取传输。纹理存储器被设计成能够利用这种方寸模型,这样它只会从显存读取1次,然后缓冲掉,因此执行速度会快得多
  • 纹理内存支持2D和3D的纹理读取操作,但编程可能没有那么容易
  • 下边给出一个通过纹理内存进行数组赋值的例子:
#include "stdio.h"
#include<iostream>
#include <cuda.h>
#include <cuda_runtime.h>
#define NUM_THREADS 10
#define N 10//纹理内存定义
texture <float, 1, cudaReadModeElementType> textureRef;
__global__ void gpu_texture_memory(int n, float *d_out)
{int idx = blockIdx.x*blockDim.x + threadIdx.x;if (idx < n) {float temp = tex1D(textureRef, float(idx));d_out[idx] = temp;}
}int main()
{//Calculate number of blocks to launchint num_blocks = N / NUM_THREADS + ((N % NUM_THREADS) ? 1 : 0);//Declare device pointerfloat *d_out;// allocate space on the device for the resultcudaMalloc((void**)&d_out, sizeof(float) * N);// allocate space on the host for the resultsfloat *h_out = (float*)malloc(sizeof(float)*N);//Declare and initialize host arrayfloat h_in[N];for (int i = 0; i < N; i++) {h_in[i] = float(i);}//Define CUDA ArraycudaArray *cu_Array;cudaMallocArray(&cu_Array, &textureRef.channelDesc, N, 1);//Copy data to CUDA Array,(0,0)表示从左上角开始cudaMemcpyToArray(cu_Array, 0, 0, h_in, sizeof(float)*N, cudaMemcpyHostToDevice);// bind a texture to the CUDA arraycudaBindTextureToArray(textureRef, cu_Array);//Call Kernel	gpu_texture_memory << <num_blocks, NUM_THREADS >> >(N, d_out);// copy result back to hostcudaMemcpy(h_out, d_out, sizeof(float)*N, cudaMemcpyDeviceToHost);printf("Use of Texture memory on GPU: \n");for (int i = 0; i < N; i++) {printf("Texture element at %d is : %f\n",i, h_out[i]);}free(h_out);cudaFree(d_out);cudaFreeArray(cu_Array);cudaUnbindTexture(textureRef);}
  • 纹理引用是通过 texture<> 类型的变量进行定义的,定义是的三个参数意思是:
texture <p1, p2, p3> textureRef;
p1: 纹理元素的类型
p2: 纹理引用的类型,可以是1D,2D,3D的
p3:读取模式,是个可选参数,用来说明是否要执行读取时候的自动类型转换
  • 一定要确保纹理引用被定义成全局静态变量,同时还要确保它不能作为参数传递给任何其他函数
  • cudaBindTextureToArray 函数将纹理引用和CUDA数组进行绑定
  • 运行结果如下:
    在这里插入图片描述
  • ------ end------

这篇关于[7] CUDA之常量内存与纹理内存的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1004766

相关文章

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

最新Spring Security的基于内存用户认证方式

《最新SpringSecurity的基于内存用户认证方式》本文讲解SpringSecurity内存认证配置,适用于开发、测试等场景,通过代码创建用户及权限管理,支持密码加密,虽简单但不持久化,生产环... 目录1. 前言2. 因何选择内存认证?3. 基础配置实战❶ 创建Spring Security配置文件

java内存泄漏排查过程及解决

《java内存泄漏排查过程及解决》公司某服务内存持续增长,疑似内存泄漏,未触发OOM,排查方法包括检查JVM配置、分析GC执行状态、导出堆内存快照并用IDEAProfiler工具定位大对象及代码... 目录内存泄漏内存问题排查1.查看JVM内存配置2.分析gc是否正常执行3.导出 dump 各种工具分析4.

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir