【甘道夫】Sqoop1.4.4 实现将 Oracle10g 中的增量数据导入 Hive0.13.1 ,并更新Hive中的主表

本文主要是介绍【甘道夫】Sqoop1.4.4 实现将 Oracle10g 中的增量数据导入 Hive0.13.1 ,并更新Hive中的主表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

需求
将Oracle中的业务基础表增量数据导入Hive中,与当前的全量表合并为最新的全量表。

***欢迎转载,请注明来源***   
http://blog.csdn.net/u010967382/article/details/38735381

设计
涉及的三张表:
  • 全量表保存了截止上一次同步时间的全量基础数据表
  • 增量表:增量临时表
  • 更新后的全量表:更新后的全量数据表

步骤:
  1. 通过Sqoop将Oracle中的表导入Hive,模拟全量表和增量表
  2. 通过Hive将“全量表+增量表”合并为“更新后的全量表”,覆盖当前的全量表

步骤1: 通过Sqoop将Oracle中表的导入Hive,模拟全量表和增量表
为了模拟场景,需要一张全量表,和一张增量表,由于数据源有限,所以两个表都来自Oracle中的OMP_SERVICE,全量表包含所有数据,在Hive中名称叫service_all,增量表包含部分时间段数据,在Hive中名称叫service_tmp。

(1)全量表导入:导出所有数据,只要部分字段,导入到Hive指定表里
为实现导入Hive功能,需要先配置HCatalog(HCatalog是Hive子模块)的环境变量,/etc/profile中新增:
export HCAT_HOME=/home/fulong/Hive/apache-hive-0.13.1-bin/hcatalog

执行以下命令导入数据:
fulong@FBI006:~/Sqoop/sqoop-1.4.4/bin$ ./sqoop import \
> --connect jdbc:oracle:thin:@192.168.0.147:1521:ORCLGBK  --username SP --password fulong \
> --table OMP_SERVICE \
> --columns "SERVICE_CODE,SERVICE_NAME,SERVICE_PROCESS,CREATE_TIME,ENABLE_ORG,ENABLE_PLATFORM,IF_DEL" \
> --hive-import --hive-table SERVICE_ALL

注意:用户名必须大写

(2)增量表导入:只导出所需时间范围内的数据,只要部分字段,导入到Hive指定表里
使用以下命令导入数据:
fulong@FBI006:~/Sqoop/sqoop-1.4.4/bin$ ./sqoop import \
> --connect jdbc:oracle:thin:@192.168.0.147:1521:ORCLGBK  --username SP --password fulong \
> --table OMP_SERVICE \
> --columns "SERVICE_CODE,SERVICE_NAME,SERVICE_PROCESS,CREATE_TIME,ENABLE_ORG,ENABLE_PLATFORM,IF_DEL" \
> --where "CREATE_TIME > to_date('2012/12/4 17:00:00','yyyy-mm-dd hh24:mi:ss') and CREATE_TIME < to_date('2012/12/4 18:00:00','yyyy-mm-dd hh24:mi:ss')" \
> --hive-import --hive-overwrite --hive-table SERVICE_TMP

注意:
  1. 由于使用了--hive-overwrite参数,所以该语句可反复执行,往service_tmp表中覆盖插入最新的增量数据;
  2. Sqoop还支持使用复杂Sql语句查询数据导入,相亲参见http://sqoop.apache.org/docs/1.4.4/SqoopUserGuide.html的“7.2.3.Free-form Query Imports”章节

(3)验证导入结果:列出所有表,统计行数,查看表结构
hive>  show tables;
OK
searchlog
searchlog_tmp
service_all
service_tmp
Time taken: 0.04 seconds, Fetched: 4 row(s)
hive>  select count(*) from service_all;
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job_1407233914535_0013, Tracking URL = http://FBI003:8088/proxy/application_1407233914535_0013/
Kill Command = /home/fulong/Hadoop/hadoop-2.2.0/bin/hadoop job  -kill job_1407233914535_0013
Hadoop job information for Stage-1: number of mappers: 3; number of reducers: 1
2014-08-21 16:51:47,389 Stage-1 map = 0%,  reduce = 0%
2014-08-21 16:51:59,816 Stage-1 map = 33%,  reduce = 0%, Cumulative CPU 1.36 sec
2014-08-21 16:52:01,996 Stage-1 map = 67%,  reduce = 0%, Cumulative CPU 2.45 sec
2014-08-21 16:52:07,877 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 3.96 sec
2014-08-21 16:52:17,639 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 5.29 sec
MapReduce Total cumulative CPU time: 5 seconds 290 msec
Ended Job = job_1407233914535_0013
MapReduce Jobs Launched:
Job 0: Map: 3  Reduce: 1   Cumulative CPU: 5.46 sec   HDFS Read: 687141 HDFS Write: 5 SUCCESS
Total MapReduce CPU Time Spent: 5 seconds 460 msec
OK
6803
Time taken: 59.386 seconds, Fetched: 1 row(s)
hive>  select count(*) from service_tmp;
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job_1407233914535_0014, Tracking URL = http://FBI003:8088/proxy/application_1407233914535_0014/
Kill Command = /home/fulong/Hadoop/hadoop-2.2.0/bin/hadoop job  -kill job_1407233914535_0014
Hadoop job information for Stage-1: number of mappers: 3; number of reducers: 1
2014-08-21 16:53:03,951 Stage-1 map = 0%,  reduce = 0%
2014-08-21 16:53:15,189 Stage-1 map = 67%,  reduce = 0%, Cumulative CPU 2.17 sec
2014-08-21 16:53:16,236 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 3.38 sec
2014-08-21 16:53:57,935 Stage-1 map = 100%,  reduce = 22%, Cumulative CPU 3.78 sec
2014-08-21 16:54:01,811 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 5.34 sec
MapReduce Total cumulative CPU time: 5 seconds 340 msec
Ended Job = job_1407233914535_0014
MapReduce Jobs Launched:
Job 0: Map: 3  Reduce: 1   Cumulative CPU: 5.66 sec   HDFS Read: 4720 HDFS Write: 3 SUCCESS
Total MapReduce CPU Time Spent: 5 seconds 660 msec
OK
13
Time taken: 75.856 seconds, Fetched: 1 row(s)
hive>  describe service_all;
OK
service_code            string
service_name            string
service_process         string
create_time             string
enable_org              string
enable_platform         string
if_del                  string
Time taken: 0.169 seconds, Fetched: 7 row(s)
hive>  describe service_tmp;
OK
service_code            string
service_name            string
service_process         string
create_time             string
enable_org              string
enable_platform         string
if_del                  string
Time taken: 0.117 seconds, Fetched: 7 row(s)

步骤2:通过Hive将“全量表+增量表”合并为“更新后的全量表”,覆盖当前的全量表

合并新表的逻辑如下:
  • 整个tmp表进入最终表中
  • all表的数据中不包含在tmp表service_code范围内的数据全部进入新表
执行以下sql语句可以合并得到更新后的全量表:
hive> select * from service_tmp  union all  select a.* from service_all a left outer join service_tmp b on a.service_code = b.service_code where b.service_code is null;

我们需要直接将查询结果更新回全量表中:
hive> insert overwrite table service_all select * from service_tmp union all select a.* from service_all a left outer join service_tmp b on a.service_code = b.service_code where b.service_code is null;

注意,将查询结果插入表有以下两类语法:
  • INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...) [IF NOT EXISTS]] select_statement1 FROM from_statement;
  • INSERT INTO TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)] select_statement1 FROM from_statement;
INSERT OVERWRITE 将会覆盖现有数据,由于当前场景需要更新全量表,所以使用了覆盖模式;
INSERT INTO 不会覆盖现有数据,是追加数据

到此为止,Hive中的service_all表已经更新为最新的数据!
在真实场景中,需要结合shell+cron实现该过程的定时执行。

这篇关于【甘道夫】Sqoop1.4.4 实现将 Oracle10g 中的增量数据导入 Hive0.13.1 ,并更新Hive中的主表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1004661

相关文章

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统