数据驱动(Data-Driven)和以数据为中心(Data-Centric)的区别

2024-05-26 12:44

本文主要是介绍数据驱动(Data-Driven)和以数据为中心(Data-Centric)的区别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、什么是数据驱动?

数据驱动(Data-Driven)是在管理科学领域经常提到的名词。数据驱动决策(Data-Driven Decision Making,简称DDD)是一种方法论,即在决策过程中主要依赖于数据分析和解释,而不是依赖于直觉或个人经验。它是相对于传统的经验驱动、直觉驱动或者偏见驱动的决策来讲的。

Case1:数据驱动的案例

Netflix公司通过收集和分析用户的观看习惯,评分,搜索和其他行为数据,开发出高度个性化的推荐算法,以提高用户体验并增加用户观看时间。这种数据驱动的方法也被应用于决定哪些电影和电视节目应该被购买或制作。例如,它的原创剧集"纸牌屋"(House of Cards)就是基于大量用户数据分析的结果决定制作的。

我们拿到数据,经过数据预处理,然后用来训练模型,利用模型进行决策,这就是数据驱动的决策。可以说,目前的机器学习方法和深度学习方法大都是这个形式。但是早期的机器学习方法就是经验驱动的偏多了。经验驱动模型的设计和开发基于专家的经验知识,目的是将特定领域的专家知识和推理过程编码到计算机程序中。这些系统利用了人工智能中的知识表示和知识推理技术,特别是规则基础的推理,来模仿人类专家的决策过程。如早期的专家系统:

Case2:经验驱动的下象棋模型

比如我们想创建一个会下象棋的模型,这个模型就需要在博弈中决策每一步的棋子走法。经验驱动的模型是这样设计的,首先把每个棋子的规则写进模型,如“马走日,象飞田”等,然后找几个下象棋的高手,然后把这些高手的下棋套路写进模型,如对方“当头炮”,那模型就要“把马跳”,把高手的每一步应对策略当做规则写进模型里。

 同样的案例,数据驱动的决策模型就不依赖专家规则:

Case3:数据驱动的下象棋模型

我收集大量的博弈数据,构建象棋数据集,比如根据几百年来的棋谱和高手博弈的数百万场棋局中的每一步走法创建一个如下的数据集:

Xy
兵1兵2...
(4,5)(4,5)(4,5)(-1,-1)兵1向右移动1格
(4,6)(4,5)(4,5)(-1,-1).....

不需要告诉模型“马走日,象飞田”这些基本规则,只需要把数据输入到模型(如逻辑回归,当然这个模型很垃圾)中进行训练,就可以得到一个会下象棋的决策模型。

二、什么是以数据为中心?

在上面的Case3中提到,我们得到数据后,使用逻辑回归来拟合这个分类模型,由于逻辑回归的算法很简单,效果很差,所以大家就会琢磨更多更复杂更厉害的算法来拟合这些数据,比如深度学习算法,慢慢的,随着技术的发展,模型能力越来越好。直到2017年,谷歌提出Attention is All you Need,从此来到了Transformer一统天下的地步,直到现在(2024.05),还没有产生可以挑战Transformer模型架构的新架构出现,尤其是大语言模型诞生后,Transformer架构的能力给予人们巨大的震撼。

由此可见,随着技术的发展,算法的复杂性已经不再是限制模型能力的瓶颈。之前人们卷算法、卷模型的时代,可以称作“Model-Centric”,人们的重点关注对象是模型。而现在,模型已经不是限制人工智能的主要方面,所以有人提出了“Data-Centric”以数据为中心的人工智能,Data-Centric的意思不是说不关注模型,而是说把模型和数据看的一样重要,毕竟AI领域有句俗语“Garbage in garbage out”——垃圾进,垃圾出。意思是垃圾的数据进去,无论模型多NB,出来的还是垃圾的模型,大不了是个过拟合的垃圾模型。

尤其是ChatGPT的训练路径,可以看出在数据集上的大量人力标注和筛选,保证高质量的数据。

数据降噪、数据去偏、数据增强、数据平衡、数据配比、数据课程这些方法都属于Data-Centric的范畴,目前发展还处于初步阶段。


参考文献

什么是数据驱动?到底如何驱动?数据驱动的内涵、方法、案例、优势和特征分析

专家系统简要介绍 - 乔胤博的文章 - 知乎
https://zhuanlan.zhihu.com/p/381896056

目前以数据为中心(Data-centric)的人工智能发展如何? - 知乎
https://www.zhihu.com/question/521096166

Data-Centric AI思考和实践 - 北冥有歌的文章 - 知乎
https://zhuanlan.zhihu.com/p/593692636

2023年后,AI 还有什么研究方向有前景? - 一堆废纸的回答 - 知乎
https://www.zhihu.com/question/591140366/answer/2961915932

这篇关于数据驱动(Data-Driven)和以数据为中心(Data-Centric)的区别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1004498

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

Linux之platform平台设备驱动详解

《Linux之platform平台设备驱动详解》Linux设备驱动模型中,Platform总线作为虚拟总线统一管理无物理总线依赖的嵌入式设备,通过platform_driver和platform_de... 目录platform驱动注册platform设备注册设备树Platform驱动和设备的关系总结在 l

JAVA覆盖和重写的区别及说明

《JAVA覆盖和重写的区别及说明》非静态方法的覆盖即重写,具有多态性;静态方法无法被覆盖,但可被重写(仅通过类名调用),二者区别在于绑定时机与引用类型关联性... 目录Java覆盖和重写的区别经常听到两种话认真读完上面两份代码JAVA覆盖和重写的区别经常听到两种话1.覆盖=重写。2.静态方法可andro

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

MyBatis中$与#的区别解析

《MyBatis中$与#的区别解析》文章浏览阅读314次,点赞4次,收藏6次。MyBatis使用#{}作为参数占位符时,会创建预处理语句(PreparedStatement),并将参数值作为预处理语句... 目录一、介绍二、sql注入风险实例一、介绍#(井号):MyBATis使用#{}作为参数占位符时,会