基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法

本文主要是介绍基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

       基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法,对比两个算法的仿真时间,收敛曲线,以及路径规划的结果,最短路径长度。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

3.核心程序

...........................................................................
while t>=Temp1%温度降温判决tfor j=1:MK_lineif rand<0.75%交换顺序idx1=0;idx2=0;while(idx1==idx2&&idx1>=idx2)idx1=ceil(rand*n);idx2=ceil(rand*n);end                      Rout_tmp    = Rout1(idx1);Rout1(idx1) = Rout1(idx2);Rout1(idx2) = Rout_tmp;elseidx0   = zeros(3,1);Lidx   = length(unique(idx0));while Lidx<3 idx0 = ceil([rand*n rand*n rand*n]);Lidx = length(unique(idx0));endStidx0 = sort(idx0);Stidx1 = Stidx0(1);Stidx2 = Stidx0(2);Stidx3 = Stidx0(3);route0 = Rout1;route0(Stidx1:Stidx1+Stidx3-Stidx2-1) = Rout1(Stidx2+1:Stidx3);route0(Stidx1+Stidx3-Stidx2:Stidx3)   = Rout1(Stidx1:Stidx2);Rout1                                 = route0;    end %计算路径的距离 Lent = 0;Route= [Rout1 Rout1(1)];for j = 1:nLent = Lent + md(Route(j),Route(j + 1));end
endfigure;
plot(Tempset);
xlabel('迭代次数');
ylabel('模拟退火收敛曲线');%结果显示 
time = toc;figure;
Route=[Routb Routb(1)];
plot([Pxy(Route ,1)], [Pxy(Route ,2)],'r-x');
for i = 1:n%对每个城市进行标号text(Pxy(i,1),Pxy(i,2),['   ' num2str(i)]);
end
xlabel('X坐标')
ylabel('Y坐标')
title(['SA(最短距离):' num2str(Lbest) ''])save R1.mat Tempset time Lbest Routb Route Pxy n
54

4.本算法原理

        旅行商问题(Traveling Salesman Problem, TSP)是一个经典的组合优化问题,目标是寻找最短的可能路线,使得旅行商能够访问每个城市恰好一次并最终返回出发点。模拟退火算法(Simulated Annealing, SA)和蚁群优化算法(Ant Colony Optimization, ACO)是解决此类问题的两种启发式优化方法,它们各自以不同的自然现象为灵感,展示了优化问题的生物启发式解决方案。

       模拟退火算法源于金属热处理中的退火过程,通过模拟固体冷却过程中的微观状态转变来搜索全局最优解。它允许算法在搜索过程中暂时接受比当前解更差的解,从而有助于跳出局部最优,达到全局探索。

       蚁群优化算法模仿蚂蚁在寻找食物过程中留下信息素痕迹的行为,通过正反馈机制来发现最短路径。

对比分析

  • 探索与利用平衡:SA通过温度参数控制探索与利用的平衡,高温时更倾向于探索全局,低温时偏向于局部精炼;而ACO通过信息素浓度和启发式信息调节,信息素浓度高的路径更容易被再次选择,同时信息素挥发机制促进探索。

  • 全局优化能力:SA理论上能较好地跳出局部最优,但在参数设置不当(如冷却速率过快或过慢)时,可能影响性能;ACO通过正反馈机制和分布式搜索,也表现出较好的全局寻优能力,但依赖于参数调优和初始化。

  • 计算复杂度:SA的计算复杂度相对较低,主要在于状态转移和接受准则的计算;ACO在大规模问题中可能面临较高的计算复杂度,尤其是信息素更新和选择概率的计算。

  • 适用性:SA因其灵活性和通用性,适合于多种类型的优化问题;ACO则特别适合解决路径优化类问题,其生物学背景使其在理解和解释上更为直观。

5.完整程序

VVV

这篇关于基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1003669

相关文章

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

PostgreSQL 序列(Sequence) 与 Oracle 序列对比差异分析

《PostgreSQL序列(Sequence)与Oracle序列对比差异分析》PostgreSQL和Oracle都提供了序列(Sequence)功能,但在实现细节和使用方式上存在一些重要差异,... 目录PostgreSQL 序列(Sequence) 与 oracle 序列对比一 基本语法对比1.1 创建序

Idea插件MybatisX失效的问题解决

《Idea插件MybatisX失效的问题解决》:本文主要介绍Idea插件MybatisX失效的问题解决,详细的介绍了4种问题的解决方法,具有一定的参考价值,感兴趣的可以了解一下... 目录一、重启idea或者卸载重装MyBATis插件(无需多言)二、检查.XML文件与.Java(该文件后缀Idea可能会隐藏

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索

Nginx 访问 /root/下 403 Forbidden问题解决

《Nginx访问/root/下403Forbidden问题解决》在使用Nginx作为Web服务器时,可能会遇到403Forbidden错误,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录解决 Nginx 访问 /root/test/1.html 403 Forbidden 问题问题复现Ng

Python的pip在命令行无法使用问题的解决方法

《Python的pip在命令行无法使用问题的解决方法》PIP是通用的Python包管理工具,提供了对Python包的查找、下载、安装、卸载、更新等功能,安装诸如Pygame、Pymysql等Pyt... 目录前言一. pip是什么?二. 为什么无法使用?1. 当我们在命令行输入指令并回车时,一般主要是出现以

Nginx部署React项目时重定向循环问题的解决方案

《Nginx部署React项目时重定向循环问题的解决方案》Nginx在处理React项目请求时出现重定向循环,通常是由于`try_files`配置错误或`root`路径配置不当导致的,本文给大家详细介... 目录问题原因1. try_files 配置错误2. root 路径错误解决方法1. 检查 try_f