结构体(位段)内存分配

2024-05-26 05:04
文章标签 内存 分配 结构 位段

本文主要是介绍结构体(位段)内存分配,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

   结构体由多个数据类型的成员组成。那编译器分配的内存是不是所有成员的字节数总和呢?
在这里插入图片描述

  首先,stu的内存大小并不为29个字节,即证明结构体内存不是所有成员的字节数和。
  其次,stu成员中sex的内存位置不在21,即可推测name成员起始内存位置在0。
  接着,stu成员中sex与age内存并不连续,两者相隔4个字节。
  最后,sty成员中的sex与score内存连续,但sty的内存大小与sex的内存位置也是数值差4。

那结构体的内存分配满足何种规则呢?

序号结构体内存对齐规则
1结构体的第⼀个成员对⻬到和结构体变量起始位置偏移量为0的地址处
2其他成员变量要对⻬到某个数字(对⻬数)的整数倍的地址处
3对⻬数=编译器默认的⼀个对⻬数与该成员变量⼤⼩的较⼩值
4VS 中默认的值为8,Linux中gcc没有默认对⻬数,对⻬数就是成员⾃⾝的⼤⼩
5结构体总⼤⼩为最⼤对⻬数(结构体中每个成员变量都有⼀个对⻬数,所有对⻬数中最⼤的)的整数倍。
6如果嵌套了结构体的情况,嵌套的结构体成员对⻬到⾃⼰的成员中最⼤对⻬数的整数倍处,结构体的整体⼤⼩就是所有最⼤对⻬数(含嵌套结构体中成员的对⻬数)的整数倍。

利用以上规则,我们就可以合理解释文章开头的疑问了。
在这里插入图片描述
  char类型对齐数为1,可以储存在任意位置;
  int类型对齐数为4,必须储存在内存位置为4的倍数;
  sty结构体内存大小必须是成员最大对齐数的整数倍;

  从以上分析,我们可以得出结构体存在内存浪费。而避免浪费内存的最好编程习惯就是将成员字节数小的整合在一起。

  结构体(struct)在C和C++编程语言中是一种复合数据类型,它允许你将不同类型的数据项(变量)组合成一个单一的变量名。位段(Bit-fields)是结构体中的一种特殊成员,它允许程序员指定每个成员所占用的位数,而不是使用整个字节或更大的内存空间。位段通常用于硬件编程或需要精确控制内存使用的场合。

位段的基本语法如下:

struct {  type member_name : width;  // 其他成员...  
} structure_name;type 是基础数据类型(通常是整数类型),它决定了位段的基本存储单位。
member_name 是位段的名称。
width 是一个整数,指定了该位段所占用的位数。
structure_name 是结构体的名称。

示例
下面是一个使用位段的简单示例:
在这里插入图片描述

应用场景
硬件寄存器访问·  在硬件编程中,许多设备的寄存器由一系列位组成,每个位表示设备的不同状态、配置选项或标志。使用位段可以方便地访问和控制这些位,而无需进行复杂的位运算或掩码操作。    ·  例如,一个硬件设备的状态寄存器可能有多个位字段,分别表示设备的不同状态。通过使用位段,程序员可以直接通过结构体的成员名来访问这些位字段,从而简化代码并提高可读性。
节省存储空间·  当需要存储大量的小规模数据时,位段可以有效地节省存储空间。例如,在过程控制、参数检测或数据通信等应用中,控制信息往往只占一个字节中的一个或几个二进制位。通过使用位段,可以将多个这样的信息存储在一个字节中,从而节省存储空间。                   ·   参考文章提到,位段能够把长度为奇数的数据包装在一起,节省存储空间。当程序需要成千上万个这样的结构体时,选择位段是比较明智的。
访问整数值的部分内容·  位段允许程序员方便地访问一个整数值的部分内容。这在处理包含多个不同含义的位的整数值时非常有用。通过定义位段,可以将整数值分解为多个有意义的字段,并直接访问这些字段的值。
·  例如,在TCP/IP协议中,数据包头通常由多个字段组成,每个字段占用不同的位数。通过使用位段,可以方便地解析数据包头并提取所需的字段值。
提高代码可读性·  通过使用位段,可以将整数值分解为多个有意义的字段,并为每个字段分配一个具有描述性的名称。这有助于提高代码的可读性和可维护性。程序员可以更容易地理解代码的目的和功能,并更轻松地修改和维护代码。
注意事项
跨平台和编译器差异位段的具体行为可能因编译器和平台而异。不同的编译器可能会对位段的布局、填充和访问方式进行不同的解释。因此,在使用位段时,应确保你的代码在所有目标平台上都能正常工作。
内存对齐编译器可能会在位段之间插入填充字节,以确保结构体成员在内存中的对齐。这可能会导致位段的实际内存布局与你在代码中指定的不同。
位段的大小限制位段的大小通常受到其基础数据类型大小的限制。例如,如果你使用unsigned int作为位段的基础数据类型,并且你的系统中unsigned int是32位的,那么任何unsigned int位段的最大宽度都不能超过32位。
访问和修改由于位段的行为可能因编译器而异,因此在使用位段时应格外小心。在访问或修改位段的值时,可能需要使用位操作(如按位与、按位或、位移等)来确保数据的正确性。
可移植性由于位段的行为可能因编译器和平台而异,因此在使用位段时应考虑代码的可移植性。如果可能的话,最好避免在需要跨平台兼容性的代码中使用位段。

这篇关于结构体(位段)内存分配的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1003570

相关文章

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Java集合中的链表与结构详解

《Java集合中的链表与结构详解》链表是一种物理存储结构上非连续的存储结构,数据元素的逻辑顺序的通过链表中的引用链接次序实现,文章对比ArrayList与LinkedList的结构差异,详细讲解了链表... 目录一、链表概念与结构二、当向单链表的实现2.1 准备工作2.2 初始化链表2.3 打印数据、链表长

创建springBoot模块没有目录结构的解决方案

《创建springBoot模块没有目录结构的解决方案》2023版IntelliJIDEA创建模块时可能出现目录结构识别错误,导致文件显示异常,解决方法为选择模块后点击确认,重新校准项目结构设置,确保源... 目录创建spChina编程ringBoot模块没有目录结构解决方案总结创建springBoot模块没有目录

SpringBoot利用树形结构优化查询速度

《SpringBoot利用树形结构优化查询速度》这篇文章主要为大家详细介绍了SpringBoot利用树形结构优化查询速度,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一个真实的性能灾难传统方案为什么这么慢N+1查询灾难性能测试数据对比核心解决方案:一次查询 + O(n)算法解决

Oracle查询表结构建表语句索引等方式

《Oracle查询表结构建表语句索引等方式》使用USER_TAB_COLUMNS查询表结构可避免系统隐藏字段(如LISTUSER的CLOB与VARCHAR2同名字段),这些字段可能为dbms_lob.... 目录oracle查询表结构建表语句索引1.用“USER_TAB_COLUMNS”查询表结构2.用“a

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

最新Spring Security的基于内存用户认证方式

《最新SpringSecurity的基于内存用户认证方式》本文讲解SpringSecurity内存认证配置,适用于开发、测试等场景,通过代码创建用户及权限管理,支持密码加密,虽简单但不持久化,生产环... 目录1. 前言2. 因何选择内存认证?3. 基础配置实战❶ 创建Spring Security配置文件

java内存泄漏排查过程及解决

《java内存泄漏排查过程及解决》公司某服务内存持续增长,疑似内存泄漏,未触发OOM,排查方法包括检查JVM配置、分析GC执行状态、导出堆内存快照并用IDEAProfiler工具定位大对象及代码... 目录内存泄漏内存问题排查1.查看JVM内存配置2.分析gc是否正常执行3.导出 dump 各种工具分析4.

Ubuntu如何分配​​未使用的空间

《Ubuntu如何分配​​未使用的空间》Ubuntu磁盘空间不足,实际未分配空间8.2G因LVM卷组名称格式差异(双破折号误写)导致无法扩展,确认正确卷组名后,使用lvextend和resize2fs... 目录1:原因2:操作3:报错5:解决问题:确认卷组名称​6:再次操作7:验证扩展是否成功8:问题已解