深入理解 Java 内存模型(Java Memory Model, JMM)

2024-05-26 04:04

本文主要是介绍深入理解 Java 内存模型(Java Memory Model, JMM),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深入理解 Java 内存模型(Java Memory Model, JMM)

Java 内存模型(Java Memory Model, JMM)是 Java 并发编程的基础,规定了多线程环境中变量的访问和修改行为。为了更好地理解 JMM,需要了解它如何与系统内核和 CPU 交互,尤其是涉及 CPU 的缓存机制、缓存一致性协议和内存屏障等方面。

1. JMM 的基本概念

JMM 解决了两个核心问题:可见性 和 有序性。

  • 可见性:一个线程对共享变量的修改何时对其他线程可见。
  • 有序性:程序执行的顺序是否符合代码编写的逻辑顺序。

CPU 和系统内核通过缓存一致性协议和内存屏障来实现这些特性。

2. CPU 缓存与可见性

CPU 为了提高性能,会在处理器核心中使用缓存存储数据。每个核心都有自己的缓存(如 L1、L2 和 L3 缓存),线程对变量的操作首先会在缓存中进行,然后再写回主内存。不同线程运行在不同的处理器核心上时,对共享变量的修改可能不会立即对其他线程可见。

缓存一致性协议(如 MESI 协议)用于确保多个处理器核心的缓存数据一致。MESI 协议中的四个状态分别是:修改(Modified)、独占(Exclusive)、共享(Shared)和无效(Invalid)。当一个核心修改缓存中的数据时,其他核心会被通知数据已失效,需要从主内存中重新读取。

3. 内存屏障与有序性

内存屏障(Memory Barriers)是一种 CPU 指令,用于防止处理器对特定操作进行重排序,从而保证指令执行的顺序。内存屏障在 JMM 中起到了关键作用,确保变量的可见性和有序性。

内存屏障主要分为以下几种:

  • Load Barrier(加载屏障):禁止加载操作重排序。
  • Store Barrier(存储屏障):禁止存储操作重排序。
  • Full Barrier(全屏障):禁止所有类型的重排序。

volatile 关键字在 Java 中使用内存屏障来确保对变量的读写操作不会被重排序,并且修改立即对其他线程可见。

class SharedData {private volatile boolean flag = false;public void setFlag(boolean flag) {this.flag = flag;}public boolean isFlag() {return flag;}
}

在这个示例中,flag 变量被声明为 volatile,确保每次对 flag 的修改立即刷新到主内存,其他线程能及时看到修改。

4. 指令重排序与有序性

指令重排序(Instruction Reordering)是指编译器和处理器为优化性能而对指令执行顺序进行调整。为了保证多线程程序的正确性,JMM 通过内存屏障和 happens-before 规则来限制重排序。

Happens-Before 规则

  • 程序次序规则:在一个线程内,按照代码顺序,前面的操作 happens-before 后面的操作。
  • 监视器锁规则:一个锁的解锁操作 happens-before 后续的加锁操作。
  • volatile 变量规则:对一个 volatile 变量的写操作 happens-before 后续对该变量的读操作。
  • 传递性规则:如果 A happens-before B,且 B happens-before C,则 A happens-before C。
  • 线程启动规则:Thread.start() 方法调用 happens-before 启动线程中的任何操作。
  • 线程终止规则:线程中的所有操作 happens-before 其他线程检测到该线程终止。
  • 线程中断规则:对线程的中断操作 happens-before 被中断线程检测到中断事件。

5. JMM 的实现与系统内核和 CPU

JMM 通过内存屏障和缓存一致性协议在系统内核和 CPU 层面实现。

  • 内存屏障:用于强制在特定点刷新 CPU 缓存,确保指令的执行顺序。例如,volatile 关键字在底层实现中使用内存屏障,防止对 volatile 变量的访问被重排序。
class VolatileExample {private volatile int value;public void writer() {value = 1;  // 写操作}public int reader() {return value;  // 读操作}
}

在这个示例中,writer() 方法中的写操作和 reader() 方法中的读操作通过内存屏障实现可见性和有序性。

  • 缓存一致性协议:如 MESI 协议(修改、独占、共享、无效),确保多个处理器核心的缓存数据一致。每当一个核心修改缓存中的数据时,其他核心会被通知数据已失效,需从主内存中重新读取。

6. 同步机制

为了避免线程安全问题,Java 提供了多种同步机制来协调线程对共享变量的访问。

6.1 Synchronized

synchronized 关键字用于对代码块或方法进行加锁,确保同一时刻只有一个线程可以执行被加锁的代码。

class Counter {private int count = 0;public synchronized void increment() {count++;}public synchronized int getCount() {return count;}
}

在上述示例中,synchronized 确保了 increment 和 getCount 方法在多线程环境下的安全性。

6.2 Lock

Lock 接口提供了更灵活的锁机制,可以显式地加锁和解锁。

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;class Counter {private int count = 0;private final Lock lock = new ReentrantLock();public void increment() {lock.lock();try {count++;} finally {lock.unlock();}}public int getCount() {lock.lock();try {return count;} finally {lock.unlock();}}
}

6.3 Volatile

volatile 关键字用于标记变量,使其对所有线程可见,禁止指令重排序。

class SharedData {private volatile boolean flag = false;public void setFlag(boolean flag) {this.flag = flag;}public boolean getFlag() {return flag;}
}

6.4 并发容器

Java 提供了一些线程安全的并发容器,简化了多线程编程中的共享数据管理。

  • ConcurrentHashMap
  • CopyOnWriteArrayList
  • BlockingQueue
import java.util.concurrent.ConcurrentHashMap;class ConcurrentExample {private ConcurrentHashMap<String, Integer> map = new ConcurrentHashMap<>();public void add(String key, int value) {map.put(key, value);}public int get(String key) {return map.get(key);}
}

这些容器在内部使用了复杂的同步机制,确保在高并发环境下的线程安全和高效性。

总结

Java 内存模型(JMM)通过内存屏障、缓存一致性协议等机制在系统内核和 CPU 层面上实现,确保多线程程序的可见性和有序性。理解 JMM 及其底层实现,对于编写高效且正确的并发程序至关重要。通过合理使用 volatile、synchronized 以及并发工具类,开发者可以有效地解决多线程环境中的各种问题,确保程序在高并发环境下的正确性和性能。

这篇关于深入理解 Java 内存模型(Java Memory Model, JMM)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1003471

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

破茧 JDBC:MyBatis 在 Spring Boot 中的轻量实践指南

《破茧JDBC:MyBatis在SpringBoot中的轻量实践指南》MyBatis是持久层框架,简化JDBC开发,通过接口+XML/注解实现数据访问,动态代理生成实现类,支持增删改查及参数... 目录一、什么是 MyBATis二、 MyBatis 入门2.1、创建项目2.2、配置数据库连接字符串2.3、入

Springboot项目启动失败提示找不到dao类的解决

《Springboot项目启动失败提示找不到dao类的解决》SpringBoot启动失败,因ProductServiceImpl未正确注入ProductDao,原因:Dao未注册为Bean,解决:在启... 目录错误描述原因解决方法总结***************************APPLICA编

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Apache Ignite 与 Spring Boot 集成详细指南

《ApacheIgnite与SpringBoot集成详细指南》ApacheIgnite官方指南详解如何通过SpringBootStarter扩展实现自动配置,支持厚/轻客户端模式,简化Ign... 目录 一、背景:为什么需要这个集成? 二、两种集成方式(对应两种客户端模型) 三、方式一:自动配置 Thick

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

Spring WebClient从入门到精通

《SpringWebClient从入门到精通》本文详解SpringWebClient非阻塞响应式特性及优势,涵盖核心API、实战应用与性能优化,对比RestTemplate,为微服务通信提供高效解决... 目录一、WebClient 概述1.1 为什么选择 WebClient?1.2 WebClient 与