深入理解 Java 内存模型(Java Memory Model, JMM)

2024-05-26 04:04

本文主要是介绍深入理解 Java 内存模型(Java Memory Model, JMM),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深入理解 Java 内存模型(Java Memory Model, JMM)

Java 内存模型(Java Memory Model, JMM)是 Java 并发编程的基础,规定了多线程环境中变量的访问和修改行为。为了更好地理解 JMM,需要了解它如何与系统内核和 CPU 交互,尤其是涉及 CPU 的缓存机制、缓存一致性协议和内存屏障等方面。

1. JMM 的基本概念

JMM 解决了两个核心问题:可见性 和 有序性。

  • 可见性:一个线程对共享变量的修改何时对其他线程可见。
  • 有序性:程序执行的顺序是否符合代码编写的逻辑顺序。

CPU 和系统内核通过缓存一致性协议和内存屏障来实现这些特性。

2. CPU 缓存与可见性

CPU 为了提高性能,会在处理器核心中使用缓存存储数据。每个核心都有自己的缓存(如 L1、L2 和 L3 缓存),线程对变量的操作首先会在缓存中进行,然后再写回主内存。不同线程运行在不同的处理器核心上时,对共享变量的修改可能不会立即对其他线程可见。

缓存一致性协议(如 MESI 协议)用于确保多个处理器核心的缓存数据一致。MESI 协议中的四个状态分别是:修改(Modified)、独占(Exclusive)、共享(Shared)和无效(Invalid)。当一个核心修改缓存中的数据时,其他核心会被通知数据已失效,需要从主内存中重新读取。

3. 内存屏障与有序性

内存屏障(Memory Barriers)是一种 CPU 指令,用于防止处理器对特定操作进行重排序,从而保证指令执行的顺序。内存屏障在 JMM 中起到了关键作用,确保变量的可见性和有序性。

内存屏障主要分为以下几种:

  • Load Barrier(加载屏障):禁止加载操作重排序。
  • Store Barrier(存储屏障):禁止存储操作重排序。
  • Full Barrier(全屏障):禁止所有类型的重排序。

volatile 关键字在 Java 中使用内存屏障来确保对变量的读写操作不会被重排序,并且修改立即对其他线程可见。

class SharedData {private volatile boolean flag = false;public void setFlag(boolean flag) {this.flag = flag;}public boolean isFlag() {return flag;}
}

在这个示例中,flag 变量被声明为 volatile,确保每次对 flag 的修改立即刷新到主内存,其他线程能及时看到修改。

4. 指令重排序与有序性

指令重排序(Instruction Reordering)是指编译器和处理器为优化性能而对指令执行顺序进行调整。为了保证多线程程序的正确性,JMM 通过内存屏障和 happens-before 规则来限制重排序。

Happens-Before 规则

  • 程序次序规则:在一个线程内,按照代码顺序,前面的操作 happens-before 后面的操作。
  • 监视器锁规则:一个锁的解锁操作 happens-before 后续的加锁操作。
  • volatile 变量规则:对一个 volatile 变量的写操作 happens-before 后续对该变量的读操作。
  • 传递性规则:如果 A happens-before B,且 B happens-before C,则 A happens-before C。
  • 线程启动规则:Thread.start() 方法调用 happens-before 启动线程中的任何操作。
  • 线程终止规则:线程中的所有操作 happens-before 其他线程检测到该线程终止。
  • 线程中断规则:对线程的中断操作 happens-before 被中断线程检测到中断事件。

5. JMM 的实现与系统内核和 CPU

JMM 通过内存屏障和缓存一致性协议在系统内核和 CPU 层面实现。

  • 内存屏障:用于强制在特定点刷新 CPU 缓存,确保指令的执行顺序。例如,volatile 关键字在底层实现中使用内存屏障,防止对 volatile 变量的访问被重排序。
class VolatileExample {private volatile int value;public void writer() {value = 1;  // 写操作}public int reader() {return value;  // 读操作}
}

在这个示例中,writer() 方法中的写操作和 reader() 方法中的读操作通过内存屏障实现可见性和有序性。

  • 缓存一致性协议:如 MESI 协议(修改、独占、共享、无效),确保多个处理器核心的缓存数据一致。每当一个核心修改缓存中的数据时,其他核心会被通知数据已失效,需从主内存中重新读取。

6. 同步机制

为了避免线程安全问题,Java 提供了多种同步机制来协调线程对共享变量的访问。

6.1 Synchronized

synchronized 关键字用于对代码块或方法进行加锁,确保同一时刻只有一个线程可以执行被加锁的代码。

class Counter {private int count = 0;public synchronized void increment() {count++;}public synchronized int getCount() {return count;}
}

在上述示例中,synchronized 确保了 increment 和 getCount 方法在多线程环境下的安全性。

6.2 Lock

Lock 接口提供了更灵活的锁机制,可以显式地加锁和解锁。

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;class Counter {private int count = 0;private final Lock lock = new ReentrantLock();public void increment() {lock.lock();try {count++;} finally {lock.unlock();}}public int getCount() {lock.lock();try {return count;} finally {lock.unlock();}}
}

6.3 Volatile

volatile 关键字用于标记变量,使其对所有线程可见,禁止指令重排序。

class SharedData {private volatile boolean flag = false;public void setFlag(boolean flag) {this.flag = flag;}public boolean getFlag() {return flag;}
}

6.4 并发容器

Java 提供了一些线程安全的并发容器,简化了多线程编程中的共享数据管理。

  • ConcurrentHashMap
  • CopyOnWriteArrayList
  • BlockingQueue
import java.util.concurrent.ConcurrentHashMap;class ConcurrentExample {private ConcurrentHashMap<String, Integer> map = new ConcurrentHashMap<>();public void add(String key, int value) {map.put(key, value);}public int get(String key) {return map.get(key);}
}

这些容器在内部使用了复杂的同步机制,确保在高并发环境下的线程安全和高效性。

总结

Java 内存模型(JMM)通过内存屏障、缓存一致性协议等机制在系统内核和 CPU 层面上实现,确保多线程程序的可见性和有序性。理解 JMM 及其底层实现,对于编写高效且正确的并发程序至关重要。通过合理使用 volatile、synchronized 以及并发工具类,开发者可以有效地解决多线程环境中的各种问题,确保程序在高并发环境下的正确性和性能。

这篇关于深入理解 Java 内存模型(Java Memory Model, JMM)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1003471

相关文章

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏