基于open3d对kitti数据集检测结果可视化

2024-05-25 23:36

本文主要是介绍基于open3d对kitti数据集检测结果可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

KITTI数据集是自动驾驶和计算机视觉领域中一个广泛使用的基准数据集,它提供了丰富的传感器数据,包括激光雷达、相机和GPS等。Open3D是一个功能强大的3D数据处理和可视化库,支持多种3D数据格式。本文将介绍如何使用Open3D对KITTI数据集的检测结果进行可视化。

准备工作

确保你已经安装了Open3D库。如果尚未安装,可以通过pip安装:

pip install open3d

加载点云

    points  = np.fromfile(str(bin_file), dtype=np.float32).reshape(-1, 4)mask = points[:,0]>0points= points[mask]pts = o3d.geometry.PointCloud()    pts.points = o3d.utility.Vector3dVector(points[:, :3])

解析检测框

def get_obj_corners(obj):center = [obj["Center"]["CenterX"], obj["Center"]["CenterY"], obj["Center"]["CenterZ"]]size = [obj["Size"]["ObjectLength"], obj["Size"]["ObjectWidth"], obj["Size"]["ObjectHeight"]]yaw = obj["Yaw"]rot = np.asmatrix([[math.cos(yaw), -math.sin(yaw)],\[math.sin(yaw),  math.cos(yaw)]])plain_pts = np.asmatrix([[0.5 * size[0], 0.5*size[1]],\[0.5 * size[0], -0.5*size[1]],\[-0.5 * size[0], -0.5*size[1]],\[-0.5 * size[0], 0.5*size[1]]])tran_pts = np.asarray(rot * plain_pts.transpose())tran_pts = tran_pts.transpose()corners = np.arange(24).astype(np.float32).reshape(8, 3)for i in range(8):corners[i][0] = center[0] + tran_pts[i%4][0]corners[i][1] = center[1] + tran_pts[i%4][1]corners[i][2] = center[2] + (float(i >= 4) - 0.5) * size[2]return cornersdef render_3dbbox(points, color):lines = [[0, 1], [1, 2], [2, 3], [3, 0], [4, 5], [5, 6], [6, 7], [7, 4],[0, 4], [1, 5], [2, 6], [3, 7]]colors = [color for i in range(len(lines))]line_set = o3d.geometry.LineSet()line_set.points = o3d.utility.Vector3dVector(points)line_set.lines = o3d.utility.Vector2iVector(lines)line_set.colors = o3d.utility.Vector3dVector(colors)return line_set

结果可视化

源码下载

添加我的微信ailaukalfp29, 回复Open3d

这篇关于基于open3d对kitti数据集检测结果可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1002933

相关文章

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr