ROS学习记录:用C++实现IMU航向锁定

2024-05-25 22:36

本文主要是介绍ROS学习记录:用C++实现IMU航向锁定,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

获取IMU数据的C++节点
在了解了如何获取到IMU的姿态信息(链接在上面)后,接下来尝试实现让一个节点在订阅IMU数据的时候,还能发布运动控制指令,使机器人能对姿态变化做出反应,达到一个航向锁定的效果。

一、实现步骤

在这里插入图片描述

二、开始操作

1、打开一个终端,输入cd ~/catkin_ws1/src,进入工作空间

在这里插入图片描述

2、输入 code . 打开VScode

在这里插入图片描述

3、在VScode中打开上一篇文章编写的imu_node.cpp, 上一篇文章链接已经放在开头

在这里插入图片描述

4、在imu_node.cpp中写入如下代码

#include "ros/ros.h" //包含ros头文件
#include "sensor_msgs/Imu.h"  //包含sensor_msgs/Imu消息类型头文件
#include "tf/tf.h"//用于使用TF工具,将四元素转换为欧拉角
#include "geometry_msgs/Twist.h"//引入速度消息包的头文件ros::Publisher vel_pub;//定义一个发布对象vel_pubvoid IMUCallback(sensor_msgs::Imu msg)   //IMU消息回调函数
{if(msg.orientation_covariance[0]<0)   //检查协方差,确保数据有效性return;                            //如果协方差小于0,数据无效,直接返回tf::Quaternion quaternion(            //创建四元素msg.orientation.x,              //从IMU消息中获取四元素数据msg.orientation.y,msg.orientation.z,msg.orientation.w);double roll,pitch,yaw;           //定义滚转、俯仰、偏航角tf::Matrix3x3(quaternion).getRPY(roll,pitch,yaw);// 利用TF库将四元数转换为欧拉角roll = roll*180/M_PI;       // 弧度转换为角度pitch = pitch*180/M_PI;     // 弧度转换为角度yaw = yaw*180/M_PI;         // 弧度转换为角度ROS_INFO("滚转= %.0f  俯仰= %.0f 偏航= %.0f",roll,pitch,yaw);    // 打印欧拉角double target_yaw = 90;     //设置目标偏航角double diff_angle = target_yaw-yaw;// 计算目标偏航角与当前偏航角之间的差值geometry_msgs::Twist vel_cmd;// 创建Twist类型消息对象用于发布速度指令vel_cmd.angular.z = diff_angle*0.01;// 计算角速度vel_pub.publish(vel_cmd);// 发布速度指令
}int main(int argc, char  *argv[])   // 主函数
{setlocale(LC_ALL,"");           // 设置本地区域选项ros::init(argc,argv,"imu_node");        // 初始化ROS节点ros::NodeHandle n;              // 创建节点句柄ros::Subscriber imu_sub = n.subscribe("/imu/data",10,IMUCallback); // 创建imu_sub订阅者,订阅IMU数据消息vel_pub = n.advertise<geometry_msgs::Twist>("/cmd_vel",10);//创建速度指令发布器ros::spin();// 进入自发循环,阻塞程序直至节点关闭return 0;
}

5、按CTRL+S进行保存,再按CTRL+SHIFT进行编译,编译成功

在这里插入图片描述

6、在终端中输入cd ~/catkin_ws1,进入工作空间

在这里插入图片描述

7、再输入source ./devel/setup.bash,设置ROS的环境变量,以便在当前的终端窗口中正确运行ROS软件包。

在这里插入图片描述

8、再输入roslaunch wpr_simulation wpb_simple.launch,启动机器人仿真环境

在这里插入图片描述

9、再打开一个终端,进入工作空间后输入source ./devel/setup.bash,设置环境变量

在这里插入图片描述

10、输入rosrun imu_pkg imu_node运行刚刚我们更新的节点

在这里插入图片描述

11、可以看到机器人偏航角锁定在了90度

在这里插入图片描述

12、这时因为在代码中,我们设定了目标偏航角为90度,如果想要机器人朝向其它角度可以自行修改

在这里插入图片描述

13、点这个旋转按钮,对机器人进行旋转,拖动这个蓝色的圈圈,机器人转动后,一松开鼠标,可以发现机器人会自行转回去直至目标角度90度,这便是偏航角锁定

在这里插入图片描述

ROS机器人偏航角锁定演示

14、回到节点代码,在这里加上这一句代码,给机器一个前进的速度,可以预想到,机器人会一边前进一边转弯。

在这里插入图片描述

#include "ros/ros.h" //包含ros头文件
#include "sensor_msgs/Imu.h"  //包含sensor_msgs/Imu消息类型头文件
#include "tf/tf.h"//用于使用TF工具,将四元素转换为欧拉角
#include "geometry_msgs/Twist.h"//引入速度消息包的头文件ros::Publisher vel_pub;//定义一个发布对象vel_pubvoid IMUCallback(sensor_msgs::Imu msg)   //IMU消息回调函数
{if(msg.orientation_covariance[0]<0)   //检查协方差,确保数据有效性return;                            //如果协方差小于0,数据无效,直接返回tf::Quaternion quaternion(            //创建四元素msg.orientation.x,              //从IMU消息中获取四元素数据msg.orientation.y,msg.orientation.z,msg.orientation.w);double roll,pitch,yaw;           //定义滚转、俯仰、偏航角tf::Matrix3x3(quaternion).getRPY(roll,pitch,yaw);// 利用TF库将四元数转换为欧拉角roll = roll*180/M_PI;       // 弧度转换为角度pitch = pitch*180/M_PI;     // 弧度转换为角度yaw = yaw*180/M_PI;         // 弧度转换为角度ROS_INFO("滚转= %.0f  俯仰= %.0f 偏航= %.0f",roll,pitch,yaw);    // 打印欧拉角double target_yaw = 90;     //设置目标偏航角double diff_angle = target_yaw-yaw;// 计算目标偏航角与当前偏航角之间的差值geometry_msgs::Twist vel_cmd;// 创建Twist类型消息对象用于发布速度指令vel_cmd.angular.z = diff_angle*0.01;// 计算角速度vel_cmd.linear.x = 0.1;//给机器人x轴方向一个0.1m/s的线速度vel_pub.publish(vel_cmd);// 发布速度指令
}int main(int argc, char  *argv[])   // 主函数
{setlocale(LC_ALL,"");           // 设置本地区域选项ros::init(argc,argv,"imu_node");        // 初始化ROS节点ros::NodeHandle n;              // 创建节点句柄ros::Subscriber imu_sub = n.subscribe("/imu/data",10,IMUCallback); // 创建imu_sub订阅者,订阅IMU数据消息vel_pub = n.advertise<geometry_msgs::Twist>("/cmd_vel",10);//创建速度指令发布器ros::spin();// 进入自发循环,阻塞程序直至节点关闭return 0;
}

15、CTRL+S保存后,在按CTRL+SHIFT编译,编译成功

在这里插入图片描述

16、先按CTRL+Z停止运行刚刚的节点,在重新运行节点

在这里插入图片描述

17、可以看到当拉动蓝色的圈圈后,机器人一边转一边前进

在这里插入图片描述

这篇关于ROS学习记录:用C++实现IMU航向锁定的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1002815

相关文章

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

基于Java和FFmpeg实现视频压缩和剪辑功能

《基于Java和FFmpeg实现视频压缩和剪辑功能》在视频处理开发中,压缩和剪辑是常见的需求,本文将介绍如何使用Java结合FFmpeg实现视频压缩和剪辑功能,同时去除数据库操作,仅专注于视频处理,需... 目录引言1. 环境准备1.1 项目依赖1.2 安装 FFmpeg2. 视频压缩功能实现2.1 主要功

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php

使用Python实现一个简易计算器的新手指南

《使用Python实现一个简易计算器的新手指南》计算器是编程入门的经典项目,它涵盖了变量、输入输出、条件判断等核心编程概念,通过这个小项目,可以快速掌握Python的基础语法,并为后续更复杂的项目打下... 目录准备工作基础概念解析分步实现计算器第一步:获取用户输入第二步:实现基本运算第三步:显示计算结果进

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

Java调用Python脚本实现HelloWorld的示例详解

《Java调用Python脚本实现HelloWorld的示例详解》作为程序员,我们经常会遇到需要在Java项目中调用Python脚本的场景,下面我们来看看如何从基础到进阶,一步步实现Java与Pyth... 目录一、环境准备二、基础调用:使用 Runtime.exec()2.1 实现步骤2.2 代码解析三、

C#高效实现Word文档内容查找与替换的6种方法

《C#高效实现Word文档内容查找与替换的6种方法》在日常文档处理工作中,尤其是面对大型Word文档时,手动查找、替换文本往往既耗时又容易出错,本文整理了C#查找与替换Word内容的6种方法,大家可以... 目录环境准备方法一:查找文本并替换为新文本方法二:使用正则表达式查找并替换文本方法三:将文本替换为图