[内核内存] slab分配器4---kmem_cache_init_late函数源码详解

2024-05-25 09:48

本文主要是介绍[内核内存] slab分配器4---kmem_cache_init_late函数源码详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

slab系统初始化过程中,待所有cpu都完成初始化后,通过调用kmem_cache_init_late来函数完善cache_chain上每个struct kmem_cache实例的cpu缓存机制(包括cpu本地高速缓存和每个节点上的cpu共享缓存shared cache)

kmem_cache_init_late()|---list_for_each_entry(cachep, &slab_caches, list)//遍历slab_caches全局链表中每个struct kmem_cache实例enable_cpucache(cachep, GFP_NOWAIT)//对每个struct kmem_cache实例缓存机制进行完善|--->cache_random_seq_create()//初始化struct kmem_cache实例num成员|--->计算并设置struct kmem_cache实例的limit,batchcount,shared成员|--->do_tune_cpucache()//struct kmem_cache实例缓存机制的完善和其node成员数组中数组项的初始化|--->__do_tune_cpucache()|--->alloc_kmem_cache_cpus()//分配新的本地高速缓存区域(从Per_cpu area分配)|--->将kmem_cache实例的cpu_cache指向新分配的本地高速缓存区域(Per_CPU内存空间)|---for_each_online_cpu(cpu)//遍历每个cpufree_block()//释放对应cpu旧的本地缓存中缓存的slab obj到对应的slab链表中|--->free_percpu()//释放旧的Per_CPU变量,struct kmem_cache实例的高速缓存cpu_cache|--->setup_kmem_cache_nodes()//初始化node数组中每个kmem_cache_nod实例(共享缓存区域														 更新和相关成员初始化)|---for_each_online_node(node)//遍历每个内存节点setup_kmem_cache_node()//对kmem_cache_nod实例进初始化|--->alloc_arraycache()//为当前节点共享缓存区域分配空间|--->将kmem_cache_node实例的shared成员指向新分配的共享缓存空间|--->init_cache_node()//初始化kmem_cache_node实例的的3个slab链																	 表等
// mm/slab.c
/**1.完善全局链表slab_caches上所有struct kmem_cache实例的缓存机制:*	  根据slab obj大小,给本地cpu高速缓存和每个节点shared cache重新分配内存空间,并释放旧缓存缓存的*    slab obj(free_block)和旧缓存本身(kfree))*2.初始化全局链表slab_caches上所有struct kmem_cache实例的node数组中每个struct kmem_cache_node实例的 *  相关数据(主要是每个内存节点中3种类型slab 链表的初始化)*/
void __init kmem_cache_init_late(void)
{struct kmem_cache *cachep;slab_state = UP;/* 6) resize the head arrays to their final sizes */mutex_lock(&slab_mutex);//遍历slab_caches上所有的slab cache描述符(struct kmem_cache结构体实例)list_for_each_entry(cachep, &slab_caches, list)/**完善当前slab cache描述符的cpu高速缓存机制,并对slab cache描述符的node成员中的每个struct kmem_cache_node*实例进行初始化操作.*1.对本地cpu高速缓存(cachep->cpu_cache),通过slab obj的大小重新计算array_cache每个成员的*  值,然后为每个cpu重新分配一个array_cache实例(每cpu变量),并替换旧的arry_cache。*2.若是NUMA结构,完善cpu共享高速缓存机制(分配足够的共享array_cache实例并完成地址关联).*3.为slab cache描述符每个节点对应的struct kmem_cache_node实例的相关成员进行初始化操作,主要是完成3个*  slab链表的初始化*/if (enable_cpucache(cachep, GFP_NOWAIT))BUG();mutex_unlock(&slab_mutex);/* Done! */slab_state = FULL;#ifdef CONFIG_NUMA/** Register a memory hotplug callback that initializes and frees* node.**/hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif/** The reap timers are started later, with a module init call: That part* of the kernel is not yet operational.*/
}   
/* Called with slab_mutex held always */
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
{int err;int limit = 0;int shared = 0;int batchcount = 0;//err = cache_random_seq_create(cachep, cachep->num, gfp);if (err)goto end;//判断该slab cache描述符是否属于某一个memcg组,是的画,用该组root节点对应的数据进行初始化if (!is_root_cache(cachep)) {struct kmem_cache *root = memcg_root_cache(cachep);limit = root->limit;shared = root->shared;batchcount = root->batchcount;}//找到memcg组,直接完成了初始化设置,不许要根据obj大小进行成员值预估if (limit && shared && batchcount)goto skip_setup;/** The head array serves three purposes:* - create a LIFO ordering, i.e. return objects that are cache-warm* - reduce the number of spinlock operations.* - reduce the number of linked list operations on the slab and*   bufctl chains: array operations are cheaper.* The numbers are guessed, we should auto-tune as described by* Bonwick.*/// 根据对象(slab obj)的大小计算local cache中对象的数量 if (cachep->size > 131072)limit = 1;else if (cachep->size > PAGE_SIZE)limit = 8;else if (cachep->size > 1024)limit = 24;else if (cachep->size > 256)limit = 54;elselimit = 120;/** CPU bound tasks (e.g. network routing) can exhibit cpu bound* allocation behaviour: Most allocs on one cpu, most free operations* on another cpu. For these cases, an efficient object passing between* cpus is necessary. This is provided by a shared array. The array* replaces Bonwick's magazine layer.* On uniprocessor, it's functionally equivalent (but less efficient)* to a larger limit. Thus disabled by default.* 多核下设置共享本地缓存实例的个数(struct kmem_cache的shared成员),该slab描述符每个节点的共享缓存中最大* obj数量为cachep->shared*batchcount*/shared = 0;if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)shared = 8;batchcount = (limit + 1) / 2;
skip_setup:/**根据前面计算出的limit, batchcount, shared值,为当前slab cache缓存更新本地cpu高速缓存和设置共享cpu高速缓存*/err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
end:if (err)pr_err("enable_cpucache failed for %s, error %d\n",cachep->name, -err);return err;
}
/**(1)设置slab cache描述符的本地cpu高速缓存cpu_cache(每cpu变量,是个数组,数组中每个元素对应每个cpu):*	 struct kmem_cache的cpu_caches数组中的每个成员需要更新成根据slab obj实际大小计算出来的新struct *   array_cache实例,同时将旧的固定大小的struct array_cache释放*(2)设置slab cache描述符的共享cpu高速缓存:* 		a.设置struct kmem_cache的shared值*		b.设置struct kmem_cache的node数组成员中每个struct kmem_cache_node对应节点上的cpu共享缓存数组.*		   就是跟给该slab cache缓存对应的每个节点分配足够多的struct arrary_cache实例*		c.设置struct kmem_cache的node数组成员中每个struct kmem_cache_node实例对应节点的3个slab链表		*/
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,int batchcount, int shared, gfp_t gfp)
{int ret;struct kmem_cache *c;ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);if (slab_state < FULL)return ret;if ((ret < 0) || !is_root_cache(cachep))return ret;lockdep_assert_held(&slab_mutex);for_each_memcg_cache(c, cachep) {/* return value determined by the root cache only */__do_tune_cpucache(c, limit, batchcount, shared, gfp);}return ret;
}
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,int batchcount, int shared, gfp_t gfp)
{struct array_cache __percpu *cpu_cache, *prev;int cpu;// 根据limit, batchcount数值,为每个cpu构建新的array_cache实例并存储在cpu_cache数组cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);if (!cpu_cache)return -ENOMEM;//旧的固定大小的array_cache实例数组prev = cachep->cpu_cache;//将根据slab obj大小计算出来的新本地cpu高速缓存赋值给slab cache描述符的cpu_cache成员cachep->cpu_cache = cpu_cache;//各个cpu上的每cpu变量数据同步(cachep->cpu_cache更新)kick_all_cpus_sync();check_irq_on();//更新该slab cache描述符中与本地cpu高速缓存有关的成员数据cachep->batchcount = batchcount;cachep->limit = limit;cachep->shared = shared;if (!prev)goto setup_node;/**此循环就是将旧的本地cpu高速缓存中缓存的slab obj释放给其slab系统.因为slab系统初始化时由于每个本地高*速缓存对应的avail为0,所以此处可被忽略。*/for_each_online_cpu(cpu) {LIST_HEAD(list);int node;struct kmem_cache_node *n;struct array_cache *ac = per_cpu_ptr(prev, cpu);node = cpu_to_mem(cpu);n = get_node(cachep, node);spin_lock_irq(&n->list_lock);free_block(cachep, ac->entry, ac->avail, node, &list);spin_unlock_irq(&n->list_lock);slabs_destroy(cachep, &list);}//将旧的cpu本地高速缓存这一Per_CPU变量释放(释放到每个cpu的Per_CPU area)free_percpu(prev);setup_node:return setup_kmem_cache_nodes(cachep, gfp);//分配lab cache描述每个节点对应的共享缓存区域,然后将每个节点对												 应的struct kmem_cache_node实例成员进行初始化。
}
// mm/slab.c
/*This initializes kmem_cache_node or resizes various caches for all nodes*/
static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
{......//遍历每个节点,并给每个节点的本地cpu高速缓存进行更新for_each_online_node(node) {ret = setup_kmem_cache_node(cachep, node, gfp, true);}......
}/**给slab cache描述符node数组成员中的每个struct kmem_cache_node实例进行初始化,主要工作:* 1.共享高速缓存shared成员进行内存空间分配(缓存的entry数组长度cachep->shared*cachep->batchcount)* 2.3种类型slab链表的初始化。*/
static int setup_kmem_cache_node(struct kmem_cache *cachep,int node, gfp_t gfp, bool force_change)
{int ret = -ENOMEM;struct kmem_cache_node *n;struct array_cache *old_shared = NULL;struct array_cache *new_shared = NULL;struct alien_cache **new_alien = NULL;LIST_HEAD(list);if (use_alien_caches) {new_alien = alloc_alien_cache(node, cachep->limit, gfp);if (!new_alien)goto fail;}//多cpu,slab cache描述符需要给每个内存节点分配一个共享cpu缓存区域if (cachep->shared) {/**每个节点分配的共享缓存区域最多能缓存cachep->shared * cachep->batchcount个slab obj,分配对应空间,并*将虚拟地址记录到new_shared上*/new_shared = alloc_arraycache(node,cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);if (!new_shared)goto fail;}/**1.对本slab cache描述符node数组成员中每个struct kmem_cache_node实例的free_limit成员进行初始化(*   free_limit表示该slab cache描述在对应节点中空闲obj的数量上限,超过该值就会将一定数量的slab obj释放到伙*   伴系统的空闲链表中)*2.对本slab cache描述符node数组成员中每个struct kmem_cache_node实例的3个类型slab链表进行初始化。*/ret = init_cache_node(cachep, node, gfp);if (ret)goto fail;//获取本slab cache描述符cachep对应节点node的struct kmem_cache_node的描述符n = get_node(cachep, node);spin_lock_irq(&n->list_lock);/**释放slab cache描述符管理的每个内存节点旧的cpu共享高速缓存中缓存的slab obj,释放到对应的slab链表中,就是释放*n->shared->entry数组中每个数组项指向的slab obj对象.*/if (n->shared && force_change) {free_block(cachep, n->shared->entry,n->shared->avail, node, &list);n->shared->avail = 0;}/**将新新分配并初始化的共享cpu缓存空间赋值给slab描述符对应节点的struct kmem_cache_node实例的shared成*员*/if (!n->shared || force_change) {old_shared = n->shared;n->shared = new_shared;new_shared = NULL;}if (!n->alien) {n->alien = new_alien;new_alien = NULL;}spin_unlock_irq(&n->list_lock);slabs_destroy(cachep, &list);/** To protect lockless access to n->shared during irq disabled context.* If n->shared isn't NULL in irq disabled context, accessing to it is* guaranteed to be valid until irq is re-enabled, because it will be* freed after synchronize_sched().*/if (old_shared && force_change)synchronize_sched();
fail://收尾工作释放旧的struct array_cache(释放到对应slab系统的本地高速缓存中)kfree(old_shared);kfree(new_shared);free_alien_cache(new_alien);return ret;
}

ps:

  1. 上面代码中free_block和kfree函数区别:
    1. free_block函数是把struct array_cache实例中的avail个entry数组指向的slab obj释放到对应的slab系统中(对应节点的所属的slab链表上)
    2. kfree函数基本同于free_block,但kfree将struct array_cache的slab obj释放到对应slab系统的每cpu高速缓存中.

这篇关于[内核内存] slab分配器4---kmem_cache_init_late函数源码详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1001159

相关文章

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

C#读写文本文件的多种方式详解

《C#读写文本文件的多种方式详解》这篇文章主要为大家详细介绍了C#中各种常用的文件读写方式,包括文本文件,二进制文件、CSV文件、JSON文件等,有需要的小伙伴可以参考一下... 目录一、文本文件读写1. 使用 File 类的静态方法2. 使用 StreamReader 和 StreamWriter二、二进

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

java中反射Reflection的4个作用详解

《java中反射Reflection的4个作用详解》反射Reflection是Java等编程语言中的一个重要特性,它允许程序在运行时进行自我检查和对内部成员(如字段、方法、类等)的操作,本文将详细介绍... 目录作用1、在运行时判断任意一个对象所属的类作用2、在运行时构造任意一个类的对象作用3、在运行时判断

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注