机器学习数据预处理详解:标准化、填充缺失值及编码离散特征

本文主要是介绍机器学习数据预处理详解:标准化、填充缺失值及编码离散特征,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

      • 示例数据集
        • 训练数据 (`train_data`)
        • 测试数据 (`test_data`)
      • 步骤解析
        • 1. 合并所有特征以进行预处理
        • 2. 标准化数值特征
        • 3. 填充缺失值为0
        • 4. 处理离散数值特征
        • 5. 确保所有特征都是数值类型


在机器学习建模过程中,数据预处理是至关重要的一步。本文将通过具体示例,详细解释数据预处理的关键步骤,包括标准化数值特征、填充缺失值以及编码离散特征。我们将使用一个简单的训练和测试数据集来说明这些步骤。

示例数据集

训练数据 (train_data)
IdFeature1Feature2Feature3Label
1105.0A100
2206.5B200
330NaNA300
测试数据 (test_data)
IdFeature1Feature2Feature3
4255.5B
5357.0NaN

步骤解析

1. 合并所有特征以进行预处理

首先,将训练和测试数据集的特征(不包括标签列Label)合并,以便对所有特征进行统一的预处理。

all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))

合并后的结果:

Feature1Feature2Feature3
105.0A
206.5B
30NaNA
255.5B
357.0NaN
2. 标准化数值特征

确定数值型特征的列,然后对这些特征进行标准化处理,使每个数值特征的均值为0,标准差为1。

numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
all_features[numeric_features] = all_features[numeric_features].apply(lambda x: (x - x.mean()) / x.std())

在这个例子中,Feature1Feature2 是数值型特征。首先计算它们的均值和标准差:

  • Feature1的均值 = (10 + 20 + 30 + 25 + 35) / 5 = 24
  • Feature1的标准差 ≈ 9.57
  • Feature2的均值 = (5.0 + 6.5 + 5.5 + 7.0) / 4 = 6.0
  • Feature2的标准差 ≈ 0.79

标准化后的结果:

Feature1Feature2Feature3
-1.46-1.27A
-0.420.63B
0.63NaNA
0.10-0.63B
1.151.27NaN
3. 填充缺失值为0

将数值型特征中的缺失值(NaN)填充为0。

all_features[numeric_features] = all_features[numeric_features].fillna(0)

填充缺失值后的结果:

Feature1Feature2Feature3
-1.46-1.27A
-0.420.63B
0.630.00A
0.10-0.63B
1.151.27NaN
4. 处理离散数值特征

将离散特征(分类特征)进行独热编码(one-hot encoding),包括缺失值(dummy_na=True)。

all_features = pd.get_dummies(all_features, dummy_na=True)

编码后的结果:

Feature1Feature2Feature3_AFeature3_BFeature3_nan
-1.46-1.27100
-0.420.63010
0.630.00100
0.10-0.63010
1.151.27001
5. 确保所有特征都是数值类型

确保所有特征的数据类型都是 float32

all_features = all_features.astype(np.float32)

最终结果是一个完全由数值型特征组成的DataFrame,并且所有特征都经过标准化和缺失值处理,准备好用于后续的模型训练和预测:

最终结果:

Feature1Feature2Feature3_AFeature3_BFeature3_nan
-1.46-1.271.00.00.0
-0.420.630.01.00.0
0.630.001.00.00.0
0.10-0.630.01.00.0
1.151.270.00.01.0

通过这些步骤,我们成功地对训练和测试数据集的特征进行了标准化、缺失值处理和独热编码,使其准备好用于后续的模型训练和预测。

提示:更多内容可以访问Clang’s Blog:https://www.clang.asia

这篇关于机器学习数据预处理详解:标准化、填充缺失值及编码离散特征的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1001039

相关文章

Mysql数据库聚簇索引与非聚簇索引举例详解

《Mysql数据库聚簇索引与非聚簇索引举例详解》在MySQL中聚簇索引和非聚簇索引是两种常见的索引结构,它们的主要区别在于数据的存储方式和索引的组织方式,:本文主要介绍Mysql数据库聚簇索引与非... 目录前言一、核心概念与本质区别二、聚簇索引(Clustered Index)1. 实现原理(以 Inno

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D