Sap Hana 数据迁移同步优化(二)

2024-05-25 06:12

本文主要是介绍Sap Hana 数据迁移同步优化(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简述

CloudCanal 近期对 Hana 源端链路做了新一轮优化,这篇文章简要做下分享。

本轮优化主要包含:

  • 表级别 CDC 表
  • 表级别任务位点
  • 表级别触发器

单 CDC 表的问题

CloudCanal 在实现 Hana 源端增量同步时,最初采用的是单 CDC 表的模式。

即所有订阅表的增量数据(插入、更新、删除)通过触发器统一写入同一张 CDC 表。这样设计的初衷是简化架构和实现,但是同时也带来了一些问题。

  • 触发器执行效率低:采用单个 CDC 表时,我们将订阅表的字段值拼接成 JSON 字符串;虽然这种方式统一,但增加了触发器的复杂性。当字段数量超过 300
    个时,会导致触发器效率显著下降,影响同步性能。

  • 增量数据积压:所有订阅表的变更数据集中写入单个 CDC 表,当 A 表增量数据较多而 B 表较少时,混合写入会导致无法及时处理
    B 表数据,造成 B 表数据积压,影响同步及时性。

优化点

表级别 CDC 表

本次优化实现了表级别的 CDC 表设计,每张源表都对应一张 CDC 表,CDC 表的结构仅在原表结构的基础上增加了几个位点字段,用于增量同步。

原表

CREATE COLUMN TABLE "SYSTEM"."TABLE_TWO_PK" ("ORDERID" INTEGER NOT NULL ,"PRODUCTID" INTEGER NOT NULL ,"QUANTITY" INTEGER,CONSTRAINT "FANQIE_pkey_for_TA_171171268" PRIMARY KEY ("ORDERID", "PRODUCTID")
)

CDC 表

CREATE COLUMN TABLE "SYSTEM"."SYSTEMDB_FANQIE_TABLE_TWO_PK_CDC_TABLE" ("ORDERID" INTEGER,"PRODUCTID" INTEGER,"QUANTITY" INTEGER,"__$DATA_ID" BIGINT NOT NULL ,"__$TRIGGER_ID" INTEGER NOT NULL ,"__$TRANSACTION_ID" BIGINT NOT NULL ,"__$CREATE_TIME" TIMESTAMP,"__$OPERATION" INTEGER NOT NULL 
);
-- other index

触发器 (INSERT)

CREATE TRIGGER "FANQIE"."CLOUD_CANAL_ON_I_TABLE_TWO_PK_TRIGGER_104" AFTER INSERT ON "SYSTEM"."TABLE_TWO_PK" REFERENCING NEW ROW NEW FOR EACH ROW 
BEGIN DECLARE EXIT HANDLER FOR SQLEXCEPTION BEGIN  END; IF 1=1 THEN INSERT INTO "SYSTEM"."SYSTEMDB_FANQIE_TABLE_TWO_PK_CDC_TABLE" (__$DATA_ID, __$TRIGGER_ID, __$TRANSACTION_ID, __$CREATE_TIME, __$OPERATION, "ORDERID","PRODUCTID","QUANTITY") VALUES( "SYSTEM"."CC_TRIGGER_SEQ".NEXTVAL, 433, CURRENT_UPDATE_TRANSACTION(), CURRENT_UTCTIMESTAMP, 2, :NEW."ORDERID" ,:NEW."PRODUCTID" ,:NEW."QUANTITY"  ); END IF; 
END;

这样的设计 CDC 表的好处如下:

  • 表级别 CDC 表更加独立,方便进行多次订阅。
  • 触发器只需要执行 INSERT 语句,因此对于字段较多的表也能够快速执行。
  • 扫描消费 CDC 数据时,不需要做额外的处理,消费更简单。

表级别任务位点

表级 CDC 确实带来了许多好处,但在增量同步时,每个表都有自己的位点,原有的单一位点无法满足这种同步需求。

因此,CloudCanal 引入了表级别的增量同步位点,确保每个表能够消费各自对应的增量同步位点。位点的具体体现为:

[{"db": "SYSTEMDB","schema": "FANQIE","table": "TABLE_TWO_PK","dataId": 352,"txId": 442441,"timestamp": 1715828416114},{"db": "SYSTEMDB","schema": "FANQIE","table": "TABLE_TWO_PK_2","dataId": 97,"txId": 11212,"timestamp": 1715828311123},...
]

这样做的好处如下:

  • 位点精细控制:每个表都有自己的增量同步位点,使得增量任务可以针对特定表进行增量重放,而不是重放所有表的数据。这样可以实现更加精细的控制,减少不必要的数据传输和处理,提高同步效率。

  • 数据并行处理:由于每个表有自己的位点,可以实现表级别的并行处理。不同表的增量数据可以同时进行处理,避免了单一位点导致的串行处理瓶颈,从而加快了同步速度。

核心同步原理

对于一个增量任务来说,源端涉及到扫描多个 CDC 表,需要保证单个表变更数据的顺序。

增量消费基础处理模型如下:

  • 根据源端订阅表数量,初始化相应数量的 Table Worker 工作线程。
  • 每个 Table Worker 根据位点消费对应的 CDC 表数据。

实际的 Table Worker 工作线程会根据 事务 ID 计算本次扫描范围,判断该范围是否有未提交的事务:

  • 如果有未提交事务:扫描线程进入等待队列,等待下一轮扫描。
  • 如果没有未提交事务:根据确定的范围消费增量数据,并更新单表任务位点。

未来方向

表级别位点产品化

位点状态在增量同步过程中至关重要,但针对表级别的位点,目前尚未提供可视化的界面;

包括重置位点等功能都尚未支持产品化能力,后续会逐步完善。

总结

本文简要介绍 CloudCanal 近期对 Hana
源端数据同步的优化,以及链路未来的方向,希望对读者有所帮助。

这篇关于Sap Hana 数据迁移同步优化(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1000696

相关文章

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I