2024年顶级算法-黑翅鸢优化算法(BKA)-详细原理(附matlab代码)

2024-05-25 03:44

本文主要是介绍2024年顶级算法-黑翅鸢优化算法(BKA)-详细原理(附matlab代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

黑翅鸢是一种上半身蓝灰色,下半身白色的小型鸟类。它们的显著特征包括迁徙和捕食行为。它们以小型哺乳动物、爬行动物、鸟类和昆虫为食,具有很强的悬停能力,能够取得非凡的狩猎成功。受其狩猎技能和迁徙习惯的启发,该算法作者建立了基于黑翅鸢的算法模型。

图片

基本原理:

(1)初始化:与其他大多数的此类算法一样,采用随机初始化,黑翅鸢的位置作为解。

图片

   pop是潜在解的个数,dim是给定问题维数的大小,BKij是第i个黑翅鸢的第j个维数。式中:i为介于1和pop之间的整数,BKlb和BKub分别为第i只黑翅风筝在第j维的下界和上界,rand为[ 0、1 ]之间随机选取的值。

(2)攻击行为

        作为小型草原哺乳动物和昆虫的捕食者,黑翅鸢在飞行过程中根据风速调整翅膀和尾角,静静地悬停以观察猎物,然后迅速潜水和攻击。该策略包含针对全局探索和搜索的不同攻击行为。图a展示了一个黑翅鸢在空中盘旋、展翅并保持平衡的场景。

图片

图片

    图a展示了一个黑翅鸢在空中盘旋、展翅并保持平衡的场景,且图a展示了黑翅鸢以极快的速度冲向猎物的场景。图b展示了黑翅鸢在空中盘旋时的攻击状态,且图b展示了黑翅鸢在空中盘旋时的状态。下面给出黑翅鸢攻击行为的数学模型:

图片

图片

 yi,jt和yi,jt + 1分别表示第i只黑翅鸢在第t步和第(t+1)步迭代中第j维的位置。r是一个取值范围为0到1的随机数,p是一个取值为0.9的常数。T是总的迭代次数,t是到目前为止已经完成的迭代次数。

    这些都很好理解,但是原文并未给出n是什么东西的说明。

3)迁移行为

        鸟类迁徙是为了适应季节变化,许多鸟类在冬季从北方向南方迁徙,以获得更好的生存条件和资源。迁移通常由领导带领,他们的导航能力对团队的成功至关重要。

        该算法提出了一个基于鸟群迁徙的假设:如果当前种群的适应度值小于随机种群的适应度值,领导者就会放弃领导,加入迁徙种群,说明不适合领导种群向前迁徙。

图片

    反之,如果当前种群的适应度值大于随机种群的适应度值,则引导种群直到到达目的地。这种策略可以动态地选择优秀的领导者,保证迁移的成功。上图为黑翅鸢迁徙过程中领鸟的变化情况。下面是关于迁移行为的一个数学模型:

图片

图片

Ljt代表了迄今为止第t次迭代的第j维黑翅鸢的领先得分者(当前最优解)。

yi,jt和yi,jt + 1分别表示第i只黑翅鸢在第t步和第(t+1)步迭代中第j维的位置。

 C( 0、1 )代表柯西突变( Jiang , et al 2023)。其定义如下:

一维柯西分布是具有两个参数的连续概率分布。下面的方程说明了一维Cauchy分布的概率密度函数:

图片

当δ = 1,μ = 0时,其概率密度函数将变为标准形式。下面是精确的公式:

图片


小说明一下(原文作者勿怪):

图片

Fi表示任意黑翅鸢在第t次迭代中得到的第j维当前位置(注:这句话是上面这个文章图片原话的中文翻译,不过我觉得他这个描述有点问题。应该是:Fi是当前种群中任一个体的适应度值。因为他前面说了“如果当前种群的适应度值大于随机种群的适应度值,则引导种群直到到达目的地”。)。

图片

Fri表示第t次迭代中任意一只黑翅鸢得到的第j维随机位置的适应度值(这也是原文的中文翻译,看不明白英文的可以直接看这个翻译)。

(这句话我觉得也是有问题的,我觉得做科研还是要严谨一点,毕竟写出来东西是要让人看的,新算法更是让人大量引用的。这个F根据他原文的描述很明显是适应度值,一个种群中有pop个个体,用i来表示,j是代表维度,y(i)是代表种群中的任一个体,那么再读读这句话“Fri表示第t次迭代中任意一只黑翅鸢得到的第j维随机位置的适应度值。”这句话明显有问题,首先适应度值是个体的适应度值,个体可以这么叫,个体中各个维度的那不叫适应度值(fitness value),叫值(value),个体中各个维度的值共同作用于目标函数得到适应度值。还有“Fri”这里都没有“j”这个字母,写这个的时候却带了这个字母的解释,这让人摸不着头脑。

具体拿这个刚运行的BKA来举例,

图片

图片

这个适应度值是3.3602e-103,那它上面那行的这个解的10个维度能叫适应度值吗?

总体上还好,不过这些都是小问题,瑕不掩瑜。告诉我们后来者写文章还是要严谨一些。


这是伪代码:

图片

cec2005上测试:

F1:

图片

F2:

图片

F3:

图片

F4:

图片

F5:

图片

F6:

图片

F7:

图片

参考文献:

【1】Black‑winged kite algorithm: a nature‑inspired meta‑heuristic for solving benchmark functions and engineering problems(原文)

公众号:算法仓库,后台回复:BKA,即可免费获得此matlab版本代码,且包括原文。

这篇关于2024年顶级算法-黑翅鸢优化算法(BKA)-详细原理(附matlab代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1000391

相关文章

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

Springboot3+将ID转为JSON字符串的详细配置方案

《Springboot3+将ID转为JSON字符串的详细配置方案》:本文主要介绍纯后端实现Long/BigIntegerID转为JSON字符串的详细配置方案,s基于SpringBoot3+和Spr... 目录1. 添加依赖2. 全局 Jackson 配置3. 精准控制(可选)4. OpenAPI (Spri

MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)

《MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)》掌握多表联查(INNERJOIN,LEFTJOIN,RIGHTJOIN,FULLJOIN)和子查询(标量、列、行、表子查询、相关/非相关、... 目录第一部分:多表联查 (JOIN Operations)1. 连接的类型 (JOIN Types)

SpringBoot整合Apache Flink的详细指南

《SpringBoot整合ApacheFlink的详细指南》这篇文章主要为大家详细介绍了SpringBoot整合ApacheFlink的详细过程,涵盖环境准备,依赖配置,代码实现及运行步骤,感兴趣的... 目录1. 背景与目标2. 环境准备2.1 开发工具2.2 技术版本3. 创建 Spring Boot

使用Python实现base64字符串与图片互转的详细步骤

《使用Python实现base64字符串与图片互转的详细步骤》要将一个Base64编码的字符串转换为图片文件并保存下来,可以使用Python的base64模块来实现,这一过程包括解码Base64字符串... 目录1. 图片编码为 Base64 字符串2. Base64 字符串解码为图片文件3. 示例使用注意