变分自编码器(VAE)与生成对抗网络(GAN)在TensorFlow中实现

2024-05-24 20:08

本文主要是介绍变分自编码器(VAE)与生成对抗网络(GAN)在TensorFlow中实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

变分自编码器(VAE)与生成对抗网络(GAN)是复杂分布上无监督学习最具前景的两类方法。本文中,作者在MNIST上对这两类生成模型的性能进行了对比测试。

本项目总结了使用变分自编码器(Variational Autoencode,VAE)和生成对抗网络(GAN)对给定数据分布进行建模,并且对比了这些模型的性能。你可能会问:我们已经有了数百万张图像,为什么还要从给定数据分布中生成图像呢?正如Ian Goodfellow在NIPS 2016教程中指出的那样,实际上有很多应用。我觉得比较有趣的一种是使用GAN模拟可能的未来,就像强化学习中使用策略梯度的智能体那样。

VAE

变分自编码器柯林斯用于对先验数据分布进行建模从名字上就可以看出,它包括两部分:。编码器和解码器编码器将数据分布的高级特征映射到数据的低级表征,低级表征叫作本征向量(latent vector)。解码器吸收数据的低级表征,然后输出同样数据的高级表征。

从数学上来讲,让X作为编码器的输入,z作为本征向量,X'作为解码器的输出。


图1 VAE的架构

这与标准自编码器有何不同?关键区别在于我们对本征向量的约束。如果是标准自编码器,那么我们主要关注重建损失(即重建损失),即:


而在变分自编码器的情况中,我们希望本征向量遵循特定的分布,通常是单位高斯分布(unit Gaussian distribution),使下列损失得到优化:


其中,P(Z')N(0,I)中我指单位矩阵(身份MATRX)中,q(z|X)是本征向量的分布。KL(A,B)是分布乙到甲的KL散度


其中,状语从句:由神经网络来计算。

由于损失函数中还有其他项,因此存在模型生成图像的精度和本征向量的分布与单位高斯分布的接近程度之间存在权衡(折衷)。这两部分由两个超参数λ_1和λ_2来控制。

甘斯

GAN是根据给定的先验分布生成数据的另一种方式,包括同时进行的两部分:判别器和生成器。

判别器用于对“真”图像和“伪”图像进行分类,生成器从随机噪声中生成图像(随机噪声通常叫作本征向量或代码,该噪声通常从均匀分布(均匀分布)或高斯分布中获取)。

生成器的任务是生成可以以假乱真的图像,令判别器也无法区分出来。也就是说,生成器和判别器是互相对抗的。判别器非常努力地尝试区分真伪图像,同时生成器尽力生成更加逼真的图像,使判别器将这些图像也分类为「真」图像。


图2 GAN的典型结构


训练GAN的难点

训练GAN时我们会遇到一些挑战,我认为其中最大的挑战在于本征向量/代码的采样。代码只是从先验分布中对本征变量的噪声采样。有很多种方法可以克服该挑战,包括:使用VAE对本征变量进行编码,学习数据的先验分布。这听起来要好一些,因为编码器能够学习数据分布,现在我们可以从分布中进行采样,而不是生成随机噪声。


训练细节

我们知道两个分布p(真实分布)和q(估计分布)之间的交叉熵通过以下公式计算:


对于二元分类:


对于GAN,我们假设分布的一半来自真实数据分布,一半来自估计分布,因此:


训练GAN需要同时优化两个损失函数。

按照极小极大值算法:


这里,判别器需要区分图像的真伪,不管图像是否包含真实物体,都没有注意力。当我们在CIFAR上检查GAN生成的图像时会明显看到这一点。

VAE生成的图像与GAN生成的图像相比,前者更加模糊。这个结果在预料之中,因为VAE生成模型的所有输出都是分布的平:均。为了减少图像的模糊,我们可以使用L1损失来代替L2损失。


我们可以重新定义判别器损失目标,使之包含标签。这被证明可以提高主观样本的质量。

如:在MNIST或CIFAR-10(两个数据集都有10个类别)。

参考:

原文链接:HTTPS://kvmanohar22.github.io/Generative-Models/

项目链接:HTTPS://github.com/kvmanohar22/Generative-Models

最新进展:关于变分自编码器(VAE)与生成对抗网络(GAN)的最新研究理论,参考我的上个博客。

在CVPR2018会议上,DeepMInd科学家分享了结合GANs和VAEs各自优势的GAN hybrids模型,两者不仅可以提高VAE的采样质量和改善表示学习,另一方面也可提高GAN的稳定性和丰富度,

这篇关于变分自编码器(VAE)与生成对抗网络(GAN)在TensorFlow中实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/999407

相关文章

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont