Hive(12):Hive分析函数-窗口函数(Windowing)

2024-05-24 11:32

本文主要是介绍Hive(12):Hive分析函数-窗口函数(Windowing),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、实现功能

对于分组之后的数据进行处理。

官网:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+WindowingAndAnalytics

二、加载数据

1.emp.txt和dept.txt数据

(1)emp.txt

7369    SMITH   CLERK   7902    1980-12-17      800.00          20
7499    ALLEN   SALESMAN        7698    1981-2-20       1600.00 300.00  30
7521    WARD    SALESMAN        7698    1981-2-22       1250.00 500.00  30
7566    JONES   MANAGER 7839    1981-4-2        2975.00         20
7654    MARTIN  SALESMAN        7698    1981-9-28       1250.00 1400.00 30
7698    BLAKE   MANAGER 7839    1981-5-1        2850.00         30
7782    CLARK   MANAGER 7839    1981-6-9        2450.00         10
7788    SCOTT   ANALYST 7566    1987-4-19       3000.00         20
7839    KING    PRESIDENT               1981-11-17      5000.00         10
7844    TURNER  SALESMAN        7698    1981-9-8        1500.00 0.00    30
7876    ADAMS   CLERK   7788    1987-5-23       1100.00         20
7900    JAMES   CLERK   7698    1981-12-3       950.00          30
7902    FORD    ANALYST 7566    1981-12-3       3000.00         20
7934    MILLER  CLERK   7782    1982-1-23       1300.00         10

(2)dept.txt

10      ACCOUNTING      NEW YORK
20      RESEARCH        DALLAS
30      SALES   CHICAGO
40      OPERATIONS      BOSTON

2.创建分析表并且加载数据

(1)emp人员表

create EXTERNAL table emp(
empno int,
ename string,
job string,
mgr int,
hiredate string,
sal double,
comm double,
deptno int
)
row format delimited fields terminated by '\t' ;
load data local inpath '/opt/datas/emp.txt' into table emp;

(2)dept部门表

create EXTERNAL table dept(
deptno int,
dname string,
loc string
)
row format delimited fields terminated by '\t' ;
load data local inpath '/opt/datas/dept.txt' into table dept;

 

三、分析实例

1.测试表

hive (hadoop)> select * from emp;
OK
emp.empno       emp.ename       emp.job emp.mgr emp.hiredate    emp.sal emp.comm        emp.deptno
7369    SMITH   CLERK   7902    1980-12-17      800.0   NULL    20
7499    ALLEN   SALESMAN        7698    1981-2-20       1600.0  300.0   30
7521    WARD    SALESMAN        7698    1981-2-22       1250.0  500.0   30
7566    JONES   MANAGER 7839    1981-4-2        2975.0  NULL    20
7654    MARTIN  SALESMAN        7698    1981-9-28       1250.0  1400.0  30
7698    BLAKE   MANAGER 7839    1981-5-1        2850.0  NULL    30
7782    CLARK   MANAGER 7839    1981-6-9        2450.0  NULL    10
7788    SCOTT   ANALYST 7566    1987-4-19       3000.0  NULL    20
7839    KING    PRESIDENT       NULL    1981-11-17      5000.0  NULL    10
7844    TURNER  SALESMAN        7698    1981-9-8        1500.0  0.0     30
7876    ADAMS   CLERK   7788    1987-5-23       1100.0  NULL    20
7900    JAMES   CLERK   7698    1981-12-3       950.0   NULL    30
7902    FORD    ANALYST 7566    1981-12-3       3000.0  NULL    20
7934    MILLER  CLERK   7782    1982-1-23       1300.0  NULL    10
Time taken: 0.247 seconds, Fetched: 14 row(s)

2.实例

(1)查询部门编号10的所有员工的信息,按照薪资进行降序排列

select * from emp where deptno='10' order by sal desc;
结果:
emp.empno       emp.ename       emp.job emp.mgr emp.hiredate    emp.sal emp.comm        emp.deptno
7839    KING    PRESIDENT       NULL    1981-11-17      5000.0  NULL    10
7782    CLARK   MANAGER 7839    1981-6-9        2450.0  NULL    10
7934    MILLER  CLERK   7782    1982-1-23       1300.0  NULL    10

(2)窗口:查询所有部门的员工的信息,按照薪资进行降序排列,多加一个字段:显示该部门的最高薪资, 或者显示该部门的最低薪资。备注:求最大值,要desc;求最小值,要asc。否则会出错!

  求最大值

hive (hadoop)> select empno,ename,deptno,sal,max(sal) over (partition by deptno order by sal desc) as max_sal from emp;
结果:
empno   ename   deptno  sal     max_sal	
7839    KING    10      5000.0  5000.0	
7782    CLARK   10      2450.0  5000.0	
7934    MILLER  10      1300.0  5000.0	7788    SCOTT   20      3000.0  3000.0	
7902    FORD    20      3000.0  3000.0	
7566    JONES   20      2975.0  3000.0	
7876    ADAMS   20      1100.0  3000.0	
7369    SMITH   20      800.0   3000.0	7698    BLAKE   30      2850.0  2850.0	
7499    ALLEN   30      1600.0  2850.0
7844    TURNER  30      1500.0  2850.0
7654    MARTIN  30      1250.0  2850.0
7521    WARD    30      1250.0  2850.0
7900    JAMES   30      950.0   2850.0

  求最小值

hive (hadoop)> select empno,ename,deptno,sal,min(sal) over (partition by deptno order by sal asc) as min_sal from emp;
结果:
empno   ename   deptno  sal     min_sal
7934    MILLER  10      1300.0  1300.0
7782    CLARK   10      2450.0  1300.0
7839    KING    10      5000.0  1300.0
7369    SMITH   20      800.0   800.0
7876    ADAMS   20      1100.0  800.0
7566    JONES   20      2975.0  800.0
7788    SCOTT   20      3000.0  800.0
7902    FORD    20      3000.0  800.0
7900    JAMES   30      950.0   950.0
7654    MARTIN  30      1250.0  950.0
7521    WARD    30      1250.0  950.0
7844    TURNER  30      1500.0  950.0
7499    ALLEN   30      1600.0  950.0
7698    BLAKE   30      2850.0  950.0

(3)分析函数row_number:查询所有部门的员工的信息,按照薪资进行降序排列,最后一列显示编号

hive (hadoop)> select empno,ename,deptno,sal,row_number() over (partition by deptno order by sal desc) as rn from emp;
结果:
empno   ename   deptno  sal     rn
7839    KING    10      5000.0  1
7782    CLARK   10      2450.0  2
7934    MILLER  10      1300.0  37788    SCOTT   20      3000.0  1
7902    FORD    20      3000.0  2
7566    JONES   20      2975.0  3
7876    ADAMS   20      1100.0  4
7369    SMITH   20      800.0   57698    BLAKE   30      2850.0  1
7499    ALLEN   30      1600.0  2
7844    TURNER  30      1500.0  3
7654    MARTIN  30      1250.0  4
7521    WARD    30      1250.0  5
7900    JAMES   30      950.0   6

(4)去重薪水一样的(总共有14个人,有4个人两两薪水是一样的,hql结果应该是12人)

hive (hadoop)> select deptno,count(DISTINCT sal) over (partition by deptno ) as countNum from emp group by deptno;
结果:
deptno  countnum
10      3
20      4
30      5

(5)统计每个部门的人数

hive (hadoop)> select deptno,count(*) as count from emp group by deptno;
结果:
deptno  count
10      3
20      5
30      6

或者使用窗口函数

hive (hadoop)> select deptno,count(empno) over (partition by deptno) as count from emp group by deptno,empno;
结果:
deptno  count
10      3
10      3
10      3
20      5
20      5
20      5
20      5
20      5
30      6
30      6
30      6
30      6
30      6
30      6

(6)windows范围

PRECEDING:往前
FOLLOWING:往后
CURRENT ROW:当前行
UNBOUNDED:起点,UNBOUNDED PRECEDING 表示从前面的起点, UNBOUNDED FOLLOWING:表示到后面的终点

//1.分组内所有行排序
hive (hadoop)>  select empno,ename,deptno,sal,row_number() over (partition by deptno order by sal desc) as rn from emp;//2.分组内当前行+往前1行:加和
hive (hadoop)>  select empno,ename,deptno,sal,row_number() over (partition by deptno order by sal desc) as rn,
sum(sal) over (partition by deptno order by sal desc ) s1,
sum(sal) over (partition by deptno order by sal desc rows between 1 PRECEDING and CURRENT ROW) s2
from emp;结果:s2是本行和上一行的加和
empno   ename   deptno  sal     rn      s1      s2
7839    KING    10      5000.0  1       5000.0  5000.0
7782    CLARK   10      2450.0  2       7450.0  7450.0
7934    MILLER  10      1300.0  3       8750.0  3750.0
7788    SCOTT   20      3000.0  1       6000.0  3000.0
7902    FORD    20      3000.0  2       6000.0  6000.0
7566    JONES   20      2975.0  3       8975.0  5975.0
7876    ADAMS   20      1100.0  4       10075.0 4075.0
7369    SMITH   20      800.0   5       10875.0 1900.0
7698    BLAKE   30      2850.0  1       2850.0  2850.0
7499    ALLEN   30      1600.0  2       4450.0  4450.0
7844    TURNER  30      1500.0  3       5950.0  3100.0
7654    MARTIN  30      1250.0  4       8450.0  2750.0
7521    WARD    30      1250.0  5       8450.0  2500.0
7900    JAMES   30      950.0   6       9400.0  2200.0
Time taken: 23.458 seconds, Fetched: 14 row(s)//3.分组内当前行+往后所有行:加和
hive (hadoop)>  select empno,ename,deptno,sal,row_number() over (partition by deptno order by sal desc) as rn,
sum(sal) over (partition by deptno order by sal desc ) s1,
sum(sal) over (partition by deptno order by sal desc rows between CURRENT ROW and unbounded following ) s2
from emp;
结果:s2即为本行到最后一行累加结果(当然,是在窗口内)empno   ename   deptno  sal     rn      s1      s2
7839    KING    10      5000.0  1       5000.0  8750.0
7782    CLARK   10      2450.0  2       7450.0  3750.0
7934    MILLER  10      1300.0  3       8750.0  1300.0
7788    SCOTT   20      3000.0  1       6000.0  10875.0
7902    FORD    20      3000.0  2       6000.0  7875.0
7566    JONES   20      2975.0  3       8975.0  4875.0
7876    ADAMS   20      1100.0  4       10075.0 1900.0
7369    SMITH   20      800.0   5       10875.0 800.0
7698    BLAKE   30      2850.0  1       2850.0  9400.0
7499    ALLEN   30      1600.0  2       4450.0  6550.0
7844    TURNER  30      1500.0  3       5950.0  4950.0
7654    MARTIN  30      1250.0  4       8450.0  3450.0
7521    WARD    30      1250.0  5       8450.0  2200.0
7900    JAMES   30      950.0   6       9400.0  950.0
Time taken: 22.953 seconds, Fetched: 14 row(s)

3.总结

窗口函数核心特征:不减少原始数据个数,只是开辟一个新的维度去观察当前数据。

四、参考

1.hive窗口函数必备宝典

https://blog.csdn.net/dingchangxiu11/article/details/83145151

这篇关于Hive(12):Hive分析函数-窗口函数(Windowing)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/998288

相关文章

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MySQL中REPLACE函数与语句举例详解

《MySQL中REPLACE函数与语句举例详解》在MySQL中REPLACE函数是一个用于处理字符串的强大工具,它的主要功能是替换字符串中的某些子字符串,:本文主要介绍MySQL中REPLACE函... 目录一、REPLACE()函数语法:参数说明:功能说明:示例:二、REPLACE INTO语句语法:参数

python中update()函数的用法和一些例子

《python中update()函数的用法和一些例子》update()方法是字典对象的方法,用于将一个字典中的键值对更新到另一个字典中,:本文主要介绍python中update()函数的用法和一些... 目录前言用法注意事项示例示例 1: 使用另一个字典来更新示例 2: 使用可迭代对象来更新示例 3: 使用

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda

Python 函数详解:从基础语法到高级使用技巧

《Python函数详解:从基础语法到高级使用技巧》本文基于实例代码,全面讲解Python函数的定义、参数传递、变量作用域及类型标注等知识点,帮助初学者快速掌握函数的使用技巧,感兴趣的朋友跟随小编一起... 目录一、函数的基本概念与作用二、函数的定义与调用1. 无参函数2. 带参函数3. 带返回值的函数4.

MySQL中DATE_FORMAT时间函数的使用小结

《MySQL中DATE_FORMAT时间函数的使用小结》本文主要介绍了MySQL中DATE_FORMAT时间函数的使用小结,用于格式化日期/时间字段,可提取年月、统计月份数据、精确到天,对大家的学习或... 目录前言DATE_FORMAT时间函数总结前言mysql可以使用DATE_FORMAT获取日期字段

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、