【Python特征工程系列】一文教你使用PCA进行特征分析与降维(案例+源码)

本文主要是介绍【Python特征工程系列】一文教你使用PCA进行特征分析与降维(案例+源码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是我的第287篇原创文章。

一、引言

      主成分分析(Principal Component Analysis, PCA)是一种常用的降维技术,它通过线性变换将原始特征转换为一组线性不相关的新特征,称为主成分,以便更好地表达数据的方差。

      在特征重要性分析中,PCA 可以用于理解数据中最能解释方差的特征,并帮助识别对目标变量影响最大的特征。可以通过查看PCA的主成分(主特征向量)以及各主成分所对应的特征重要性来推断哪些原始特征在新特征中起到了较大影响。

      PCA 的局限性:

  • PCA 是一种线性变换方法,可能无法很好地处理非线性关系的数据。
  • PCA 可能会丢失一些信息,因为它主要关注的是数据中的方差,而忽略了其他方面的信
  • PCA 假设主成分与原始特征之间是线性关系,这在某些情况下可能不成立。

二、实现过程

2.1 读取数据

# 准备数据
data = pd.read_csv(r'dataset.csv')
df = pd.DataFrame(data)
print(df)
# 目标变量和特征变量
target = 'target'
features = df.columns.drop(target)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(df[features], df[target], test_size=0.2, random_state=0)

df:

图片

2.2 对训练集做PCA主成分分析

自主选择主成分,并打印出每个主成分的解释性方差:

pca = PCA(n_components='mle')
pca.fit(X_train)
var_ratio = pca.explained_variance_ratio_
for idx, val in enumerate(var_ratio, 1):print("Principle component %d: %.2f%%" % (idx, val * 100))
print("total: %.2f%%" % np.sum(var_ratio * 100))

结果:

图片

共计10个主成分。

2.3 通过主成分分析原始特征重要性

打印出每个特征对于主成分的系数,这反映了原始特征的重要性:

print(pca.components_)

结果:

图片

通过计算10个主成分中,每个原始特征的系数绝对值之和作为该特征的最终贡献度:

# 计算原始特征与主成分的相关性(绝对值)
feature_importance = np.abs(pca.components_)
# 计算每个主成分中原始特征的权重(系数)和
feature_importance_sum = np.sum(feature_importance, axis=0)
# 打印原始特征的重要性(贡献度)
print("\n原始特征的重要性(贡献度):")
ranking_df = pd.DataFrame({'特征': features, '贡献度': feature_importance_sum})
ranking_df = ranking_df.sort_values(by='贡献度')
print(ranking_df)

结果:

图片

可视化:

图片

2.4 查看累计解释方差比率与主成分个数的关系

fig, ax = plt.subplots(figsize=(10, 7))
ax.plot(np.arange(1, len(var_ratio) + 1), np.cumsum(var_ratio), "-ro")
ax.set_title("Cumulative Explained Variance Ratio", fontsize=15)
ax.set_xlabel("number of components")
ax.set_ylabel("explained variance ratio(%)")
plt.show()

结果:

图片

前2个主成分累计解释性方差比率接近0.9,前3个主成分累计解释方差比率超过0.95。

2.5 自动选择最优的主成分个数

设定累计解释方差比率的目标,让sklearn自动选择最优的主成分个数:

target = 0.9  # 保留原始数据集90%的变异
res = PCA(n_components=target).fit_transform(X_train)
print("original shape: ", X_train.shape)
print("transformed shape: ", res.shape)

结果:

图片

选择了3个主成分。

2.6 主成分选择可视化(以2个主成分为例)

选择两个主成分,并进行可视化:

pca=PCA(n_components=2)  #加载PCA算法,设置降维后主成分数目为2
reduced_x=pca.fit_transform(X_train)#对样本进行降维
principalDf = pd.DataFrame(data = reduced_x, columns = ['principal component 1', 'principal component 2'])
print(principalDf)
y_train = np.array(y_train)
yes_x,yes_y=[],[]
no_x,no_y=[],[]
for i in range(len(reduced_x)):if y_train[i] ==1:yes_x.append(reduced_x[i][0])yes_y.append(reduced_x[i][1])elif y_train[i]==0:no_x.append(reduced_x[i][0])no_y.append(reduced_x[i][1])
plt.scatter(yes_x,yes_y,c='r',marker='x')
plt.scatter(no_x,no_y,c='b',marker='D')
plt.xlabel("First Main Component")
plt.ylabel("Second Main Component")
plt.show()

结果:

图片

可以看出2个主成分可以大概划分出两类。

作者简介:

读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。需要数据集和源码的小伙伴可以关注底部公众号添加作者微信。

这篇关于【Python特征工程系列】一文教你使用PCA进行特征分析与降维(案例+源码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/998222

相关文章

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright