Pytorch DDP分布式细节分享

2024-05-24 09:44

本文主要是介绍Pytorch DDP分布式细节分享,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

自动微分和autograde

自动微分

机器学习/深度学习关键部分之一:反向传播,通过计算微分更新参数值。
自动微分的精髓在于它发现了微分计算的本质:微分计算就是一系列有限的可微算子的组合。
自动微分以链式法则为基础,依据运算逻辑把公式整理出一张有向无环图(DAG)
自动微分将一个复杂的数学运算过程分解为一系列简单的基本运算, 其中每一项基本运算都可以通过查表得出来。
自动微分法被认为是对计算机程序进行非标准的解释。
在这里插入图片描述

Torch autograde

pytorch实现了torch.autograd的内置反向自动微分引擎,号称能支持任何计算图的梯度自动计算。
autograd 记录了一个计算图,记录每一个张量的操作历史。在创建张量时,如果设置 requires_grad 为Ture,那么 Pytorch 就知道需要对该张量进行自动求导。
autograde具体动作如下:

前向传播计算时

  • 运行请求的操作以计算结果张量
  • 建立一个计算梯度的DAG图,在DAG图中维护所有已执行操作(包括操作的梯度函数以及由此产生的新张量)的记录 。每个tensor梯度计算的具体方法存放于tensor节点的grad_fn属性中。

在 DAG 根上调用.backward() 来执行后向传播

  • 利用.grad_fn计算每个张量的梯度,并且依据此构建出包含梯度计算方法的反向传播计算图。
  • 将梯度累积在各自的张量.grad属性中,并且使用链式法则,一直传播到叶子张量。
  • 每次迭代都会重新创建计算图,这使得我们可以使用Python代码在每次迭代中更改计算图的形状和大小。

前向传播

策略:

  • DDP 获取输入并将其传递给本地模型。
  • 每个进程读去自己的训练数据,DistributedSampler确保每个进程读到的数据不同。
  • 使用 _rebuild_buckets 来重置桶(需要计算梯度的参数已经分桶)
  • 模型进行前向计算,结果设置为 out。

如果find_unused_parameters设置为True,DDP 会分析本地模型的输出,从 out 开始遍历计算图,把未使用参数标示为 ready,因为每次计算图都会改变,所以每次都要遍历。
此模式(Mode)允许在模型的子图上向后运行,并且 DDP 通过从模型输出out遍历 autograd 图,将所有未使用的参数标记为就绪,以减少反向传递中涉及的参数。

tips:遍历 autograd 图会引入额外的开销,因此应用程序仅在必要时才设置 find_unused_parameters为True

后向传播

策略:

  • Autograd 引擎进行梯度计算;当一个梯度准备好时,它在该梯度累加器上的相应 DDP hooks将自动触发
  • 在 autograd_hook 之中进行all-reduce。如果某个桶里面梯度都ready,则该桶是ready。
  • 当一个桶中的梯度都准备好时,会在该桶上Reducer启动异步all-reduce以计算所有进程的梯度平均值。(一边做反向计算,一边做梯度规约)
  • 所有桶都准备好时,Reducer将阻塞等待所有allreduce操作完成。完成此操作后,将平均梯度写入param.grad所有参数的字段。
  • 在向后传播完成之后,跨不同DDP进程的对应的相同参数上的 grad 字段应该是相等的。
  • 梯度被归并之后,会再传输回autograd引擎。

数据并行

假设显卡数量为N,将每张卡的梯度分为N个桶,每张卡的梯度总量是K。
每张卡Scatter Reduce阶段:接收 N-1 次数据
每张卡allgather 阶段:接收 N-1 次数据
每张卡传输数据总量:2K*(1-1/N) ~= 2K
[图片]

[图片]

                                                                                                 ...

[图片]

[图片]

数据并行细节总结:

  • DDP中的Allreduce使用的是ring-allreduce,并且使用bucket来引入异步
  • Allreduce发生在前向传播后的梯度同步阶段,并且与反向传播计算重叠
  • Ring-allreduce优化了带宽,适用于中规模的集群,但其可能存在精度问题,不适合大规模的集群?
  • allreduce的速度受到环中相邻GPU之间最慢连接的限制(木桶效应)

参考文档:

  1. pytorch ddp实现论文 2020-08-01

这篇关于Pytorch DDP分布式细节分享的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/998055

相关文章

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

pytorch之torch.flatten()和torch.nn.Flatten()的用法

《pytorch之torch.flatten()和torch.nn.Flatten()的用法》:本文主要介绍pytorch之torch.flatten()和torch.nn.Flatten()的用... 目录torch.flatten()和torch.nn.Flatten()的用法下面举例说明总结torch

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

redis+lua实现分布式限流的示例

《redis+lua实现分布式限流的示例》本文主要介绍了redis+lua实现分布式限流的示例,可以实现复杂的限流逻辑,如滑动窗口限流,并且避免了多步操作导致的并发问题,具有一定的参考价值,感兴趣的可... 目录为什么使用Redis+Lua实现分布式限流使用ZSET也可以实现限流,为什么选择lua的方式实现