《Colab使用训练指南》

2024-05-24 07:58
文章标签 使用 训练 指南 colab

本文主要是介绍《Colab使用训练指南》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

  • Colaboratory 是一个免费的 Jupyter 笔记本环境

  • 借助 Colaboratory,可以编写和执行代码、保存和共享分析结果,以及利用强大的计算资源,所有这些都可通过浏览器免费使用

  • Colab 支持大多数主流浏览器,并且在 Chrome、Firefox 和 Safari 的最新版本上进行了最全面的测试。

  • 总体使用量限额、空闲超时时长、虚拟机最长生命周期、可用 GPU 类型以及其他因素都会随机变化

  • Colab地址

  • google云盘 (可以用来上传自定义数据集)

使用

  • 进入Colab

  • 登陆google账号

  • 点击文件——新建笔记本,进入.ipynb界面

  • 查看和配置

    • 查看pytorch版本

    • 查看是否可以使用cuda(如果不可以,需要修改运行设置)

    • 点击修改——笔记本设置——硬件加速度器

      *

    • 查看显卡配置(随机,大部分是K80

      • !nvidia-smi (命令行运行,前面要加!

如何挂载谷歌云盘

  • Colab的运行原始路径不是谷歌云盘所在路径,所以需要挂载到远程主机上
from google.colab import drive
drive.mount('/content/gdrive')
  • 点击链接,登录Google账户,获取授权码,复制粘贴回车,提示Mounted at /content/gdrive则挂载成功

  • 上传数据文件到Google云盘,检查文件

  • 如果想要更改运行目录,直接运行文件

    • 修改运行目录
    import os
    os.chdir("/content/gdrive/MyDrive/Colab Notebooks/MyCode")
    
    • ​ 使用命令行运行
    ! python example.py
    

测试

  • MNIST数据集:训练数据60000,测试数据10000
  • LeNet模型
  • 分别测试CPU版本、GPU版本、多GPU版本训练
  • 分别使用torchvision数据集和本地上传数据集测试

CPU版本

  • train_gpu_cpu.py,设置runing_mode='cpu'
import torchvision
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import transforms
import time"""
测试在Colab上训练CPUGPU
"""class LeNet(nn.Module):def __init__(self):super(LeNet, self).__init__()self.model = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5),nn.MaxPool2d(kernel_size=2),nn.Conv2d(6, 16, kernel_size=5),nn.MaxPool2d(kernel_size=2),nn.Flatten(),nn.Linear(16*4*4, 120),nn.Linear(120, 84),nn.Linear(84, 10))def forward(self, x):output = self.model(x)return outputtrain_datasets = torchvision.datasets.MNIST(root = r'../data',download=True,train=True,transform=transforms.ToTensor()
)
train_dataloader = DataLoader(dataset=train_datasets,batch_size=64
)test_datasets = torchvision.datasets.MNIST(root = r'../data',train=False,download=True,transform=transforms.ToTensor()
)
test_dataloader = DataLoader(dataset=test_datasets,batch_size=64
)train_datasets_size = len(train_datasets)
test_datasets_size = len(test_datasets)
print("训练集数量为:{}".format(train_datasets_size))
print("测试集数量为:{}".format(test_datasets_size))runing_mode = "gpu" # cpu,gpu, gpus
if runing_mode == "gpu" and torch.cuda.is_available():print("use cuda")device = torch.device("cuda")
else:print("use cpu")device = torch.device("cpu")model = LeNet()
model.to(device)loss_fn = nn.CrossEntropyLoss()
loss_fn.to(device)
learning_rate = 1e-2
optim = torch.optim.SGD(model.parameters(), lr=learning_rate)epoch = 10
train_step, test_step = 0, 0
for i in range(epoch):print("~~~~~~~~~~~~第{}轮训练开始~~~~~~~~~~~".format(i+1))start = time.time()model.train()for data in train_dataloader:imgs, targets = dataimgs, targets = imgs.to(device), targets.to(device)output = model(imgs)loss = loss_fn(output, targets)optim.zero_grad()loss.backward()optim.step()train_step += 1if train_step % 200 == 0:print("第{}次训练,loss={:.3f}".format(train_step, loss.item()))#model.eval()with torch.no_grad():test_loss, true_num = 0, 0for data in test_dataloader:imgs, targets = dataimgs, targets = imgs.to(device), targets.to(device)output = model(imgs)test_loss += loss_fn(output, targets)true_num += (output.argmax(1) == targets).sum()end = time.time()print("第{}轮测试集上的loss:{:.3f}, 正确率为:{:.3f}%,耗时:{:.3f}".format(test_step+1, test_loss.item(), 100 * true_num / test_datasets_size, end-start))test_step += 1

GPU版本

  • train_gpu_cpu.py,设置runing_mode="gpu"

测试本地数据挂载

  • 上传数据mnist.matGoogle云盘

  • 挂载云盘

  • 检查文件是否存在

  • train_with_data_upload.py

import torchvision, torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import transforms
import time
from torch.utils.data import Dataset
import scipy.io as sio
import numpy as np"""
测试训练自定义数据集
"""class mnistDataset(Dataset): # 继承Datasetdef __init__(self, imgs, targets):self.imgs = imgsself.targets = targetsdef __len__(self):return self.targets.shape[0]def __getitem__(self, idx):target = self.targets[idx,0]img = self.imgs[idx].reshape((20, 20)).Timg_tensor = torch.tensor(img, dtype=torch.float).view(-1, 20, 20)return img_tensor, np.long(target)class LeNet(nn.Module):def __init__(self):super(LeNet, self).__init__()self.model = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5),nn.MaxPool2d(kernel_size=2),nn.Conv2d(6, 16, kernel_size=3),# nn.MaxPool2d(kernel_size=2),nn.Flatten(),nn.Linear(16*6*6, 120),nn.Linear(120, 84),nn.Linear(84, 10))def forward(self, x):output = self.model(x)return output# 加载自定义数据集
path = './gdrive/MyDrive/Data/mnist.mat'
data = sio.loadmat(path)
imgs, targets = data['X'], data['y'] % 10   # 5000*400, 5000*1np.random.seed(222)
np.random.shuffle(imgs)
np.random.seed(222)
np.random.shuffle(targets)
train_imgs, test_imgs = np.split(imgs, [4000])
train_targets, test_targets = np.split(targets, [4000])train_datasets = mnistDataset(train_imgs, train_targets)
train_dataloader = DataLoader(dataset=train_datasets,batch_size=32,shuffle=True
)test_datasets = mnistDataset(test_imgs, test_targets)
test_dataloader = DataLoader(dataset=test_datasets,batch_size=32,shuffle=True
)train_datasets_size = len(train_datasets)
test_datasets_size = len(test_datasets)
print("训练集数量为:{}".format(train_datasets_size))
print("测试集数量为:{}".format(test_datasets_size))runing_mode = "gpu" # cpu,gpu, gpus
if runing_mode == "gpu" and torch.cuda.is_available():print("use cuda")device = torch.device("cuda")
else:print("use cpu")device = torch.device("cpu")model = LeNet()
model.to(device)loss_fn = nn.CrossEntropyLoss()
loss_fn.to(device)
learning_rate = 1e-2
optim = torch.optim.Adam(model.parameters(), lr=learning_rate)epoch = 20
train_step, test_step = 0, 0
for i in range(epoch):print("~~~~~~~~~~~~第{}轮训练开始~~~~~~~~~~~".format(i+1))start = time.time()model.train()for data in train_dataloader:imgs, targets = dataimgs, targets = imgs.to(device), targets.to(device)output = model(imgs)loss = loss_fn(output, targets)optim.zero_grad()loss.backward()optim.step()train_step += 1if train_step % 200 == 0:print("第{}次训练,loss={:.3f}".format(train_step, loss.item()))#model.eval()with torch.no_grad():test_loss, true_num = 0, 0for data in test_dataloader:imgs, targets = dataimgs, targets = imgs.to(device), targets.to(device)output = model(imgs)test_loss += loss_fn(output, targets)true_num += (output.argmax(1) == targets).sum()end = time.time()print("第{}轮测试集上的loss:{:.3f}, 正确率为:{:.3f}%,耗时:{:.3f}".format(test_step+1, test_loss.item(), 100 * true_num / test_datasets_size, end-start))test_step += 1

参考

如何正确地使用Google Colab

Tesla K80 GPU shown instead of Tesla T4

这篇关于《Colab使用训练指南》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/997821

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

SpringBoot整合OpenFeign的完整指南

《SpringBoot整合OpenFeign的完整指南》OpenFeign是由Netflix开发的一个声明式Web服务客户端,它使得编写HTTP客户端变得更加简单,本文为大家介绍了SpringBoot... 目录什么是OpenFeign环境准备创建 Spring Boot 项目添加依赖启用 OpenFeig

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删