YOLOv3配置文件源码详解

2024-05-20 19:32

本文主要是介绍YOLOv3配置文件源码详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

YOLOv3的配置文件,其中需要注意的是数据增强的方式,有两个,一个是
角度旋转+饱和度+曝光量+色调,外加jitter,随即调整宽高比的范围。之后需要注意的就是
3个尺度的box的mask。后续要知道他们是怎么整合起来的


[net]
# Testing
# batch=1
# subdivisions=1
# Training
batch=64 #训练样本样本数
subdivisions=16  #net->batch /= subdivisions
width=416
height=416
channels=3
momentum=0.9 #动量
decay=0.0005    #权重衰减正则化
angle=0    #旋转角度数据增强
saturation = 1.5 #饱和度数据增强
exposure = 1.5    #调整曝光量数据增强
hue=.1    #调整色调数据增强learning_rate=0.001 #学习率决定权值更新的速度
#在迭代次数小于burn_in时,其学习率更新方式有一种,大于burn_in,采用policyburn_in=1000    
max_batches = 50200 #迭代停止次数
policy=steps    #学习率更新策略
steps=40000,45000    #steps更新策略
scales=.1,.1[convolutional]
batch_normalize=1 #是否进行BN处理
filters=32    #卷积核个数,输出个数
size=3    #卷积核尺寸
stride=1
pad=1
activation=leaky
#卷积核3*3配合padding步长为1,不改变feature map大小,padding为2,改变原来一半大小# Downsample
[convolutional]
batch_normalize=1
filters=64
size=3
stride=2
pad=1
activation=leaky #网络层激活函数[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky[shortcut]
from=-3
activation=linear# Downsample
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=leaky[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky[shortcut]
from=-3   #表示前面3层,就是Resnet
activation=linear #激活函数[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky[shortcut]
from=-3
activation=linear# Downsample
[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=leaky[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky。。。中间重复的conv。。。[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky[convolutional]
size=1
stride=1
pad=1
filters=75
#filters = num*(classed+5),5的意义就是4个坐标+置信度,num表示yolo中每个cell预测的框的个数,为3,voc数据集是20类,coco数据集是80类
activation=linear[yolo]
mask = 6,7,8 #不同尺度的大小对应的anchor的索引。
# anchor的大小anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
classes=20
num=9  #每个grid cell总共预测几个box,和anchors的数量一致。
jitter=.3 #数据增强手段:jitter为随机调整宽高比的范围。
ignore_thresh = .5 #参与计算的IOU阈值大小,当预测的检测框与ground truth的IOU大于ignore_thre的时候,参与loss的计算,否则检测框不参与损失计算。
truth_thresh = 1
random=1#路由层可以包含一个或者两个值的属性,当属性只有一个值时,它输出由该索引的图层的特征图,,示例中为-4,因此路由层将从route层输出倒数的第4层的特征图。
[route] 
layers = -4[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky[upsample]
stride=2#当属性有两个值时,它会返回由其值所索引的层的拼接特征图,-1和61,并且路由层将输出前一层(-1)和第61层的特征图,沿深度维度拼接。
[route]
layers = -1, 61[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky[convolutional]
size=1
stride=1
pad=1
filters=75
activation=linear[yolo]
mask = 3,4,5
anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
classes=20
num=9
jitter=.3
ignore_thresh = .5
truth_thresh = 1
random=1[route]
layers = -4[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky[upsample]
stride=2[route]
layers = -1, 36[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky[convolutional]
size=1
stride=1
pad=1
filters=75
activation=linear#anchors有9个,但是只有带mask标签的用上了,这里的mask=0,1,2意味着,第一,第二,第三个anchors被使用了,每个cell预测3个boxes,总共我们的检测网络有3个尺度,总共9个anchors。
[yolo]
mask = 0,1,2
anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
classes=20
num=9
jitter=.3
ignore_thresh = .5
truth_thresh = 1
random=1

这篇关于YOLOv3配置文件源码详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/995910

相关文章

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编