关于FIFO Generator IP和XPM_FIFO在涉及位宽转换上的区别

2024-05-16 05:12

本文主要是介绍关于FIFO Generator IP和XPM_FIFO在涉及位宽转换上的区别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在Xilinx FPGA中,要实现FIFO的功能时,大部分时候会使用两种方法:

  • FIFO Generator IP核
  • XPM_FIFO原语

FIFO Generator IP核的优点是有图形化界面,配置参数非常直观;缺点是参数一旦固定,想要更改的化就只能重新generate IP核。

XPM_FIFO原语的优点就是参数配置方便。

对于两者,还有一个非常重要的区别。!!!大小端不一样!!!

当din的位宽和dout的位宽非对称时。举个栗子:当din的位宽为8bit,dout的位宽为32bit时。

FIFO Generator IP核按大端输出,即先写进去的数据放在高8bit

XPM_FIFO原语按小端输出,即先写进去的数据放在低8bit

下面为RTL设计文件和测试结果。

//-----------------------------------------------------------------------------
//  
//  Copyright (c) JoeJoe.
//
//  Project  : fifo_test
//  Module   : fifo_test.v
//  Parent   : None
//  Children : None
//
//  Description: 
//     
//     
//     
//
//  Parameters:
//    
//    
//    
//
//  Local Parameters:
//
//  Notes       : 
//
//  Multicycle and False Paths
//    Some exist, embedded within the submodules. See the submodule
//    descriptions.
//`timescale 1ns/1psmodule fifo_test (input sclk,input srst_n
);//***************************************************************************
// Parameter definitions
//***************************************************************************//***************************************************************************
// Reg declarations
//***************************************************************************reg [2:0] wait_cnt;reg wr_en;reg [7:0] din;wire rd_en;wire prog_full;wire full;wire empty;wire [31:0] dout;reg xpm_wr_en;reg [7:0] xpm_din;wire xpm_rd_en;wire xpm_prog_full;wire xpm_full;wire xpm_empty;wire [31:0] xpm_dout;//***************************************************************************
// Wire declarations
//***************************************************************************//***************************************************************************
// Code
//***************************************************************************// 等待XPM FIFO not busyalways @(posedge sclk) beginif (srst_n == 1'b0) beginwait_cnt <= 'd0;endelse beginif (wait_cnt == 'd7) beginwait_cnt <= wait_cnt;endelse beginwait_cnt <= wait_cnt + 'd1;endendend// 非满就写always @(posedge sclk) beginif (srst_n == 1'b0) beginwr_en <= 1'b0;din <= 'd0;endelse beginif (prog_full == 1'b1) beginwr_en <= 1'b0;din <= 'd0;endelse if (wait_cnt == 'd7) beginwr_en <= 1'b1;din <= din + 'd1;endelse beginwr_en <= 1'b0;din <= 'd0;endendend// 非空就读assign rd_en = ~empty;// 非满就写always @(posedge sclk) beginif (srst_n == 1'b0) beginxpm_wr_en <= 1'b0;xpm_din <= 'd0;endelse beginif (xpm_prog_full == 1'b1) beginxpm_wr_en <= 1'b0;xpm_din <= 'd0;endelse if (wait_cnt == 'd7) beginxpm_wr_en <= 1'b1;xpm_din <= din + 'd1;endelse beginxpm_wr_en <= 1'b0;xpm_din <= 'd0;endendend// 非空就读assign xpm_rd_en = ~xpm_empty;fifo_generator_0 U_FIFO_GENERATOR_0 (.clk              ( sclk           ) // input wire clk,.srst             ( ~srst_n        ) // input wire srst,.din              ( din            ) // input wire [7 : 0] din,.wr_en            ( wr_en          ) // input wire wr_en,.rd_en            ( rd_en          ) // input wire rd_en,.dout             ( dout           ) // output wire [31 : 0] dout,.full             ( full           ) // output wire full,.empty            ( empty          ) // output wire empty,.prog_full        ( prog_full      ) // output wire prog_full);xpm_fifo_sync #(.DOUT_RESET_VALUE   ( "0"      ), // String.ECC_MODE           ( "no_ecc" ), // String.FIFO_MEMORY_TYPE   ( "block"  ), // String.FIFO_READ_LATENCY  ( 0        ), // DECIMAL.FIFO_WRITE_DEPTH   ( 1024     ), // DECIMAL.FULL_RESET_VALUE   ( 0        ), // DECIMAL.PROG_EMPTY_THRESH  ( 10       ), // DECIMAL.PROG_FULL_THRESH   ( 500      ), // DECIMAL.RD_DATA_COUNT_WIDTH( 1        ), // DECIMAL.READ_DATA_WIDTH    ( 32       ), // DECIMAL.READ_MODE          ( "fwft"   ), // String.SIM_ASSERT_CHK     ( 0        ), // DECIMAL; 0=disable simulation messages, 1=enable simulation messages.USE_ADV_FEATURES   ( "0707"   ), // String.WAKEUP_TIME        ( 0        ), // DECIMAL.WRITE_DATA_WIDTH   ( 8        ), // DECIMAL.WR_DATA_COUNT_WIDTH( 1        )  // DECIMAL)U_XPM_FIFO_SYNC (.almost_empty   (             ), // 1-bit output: Almost Empty : When asserted, this signal indicates that// only one more read can be performed before the FIFO goes to empty..almost_full    (             ), // 1-bit output: Almost Full: When asserted, this signal indicates that// only one more write can be performed before the FIFO is full..data_valid     (             ), // 1-bit output: Read Data Valid: When asserted, this signal indicates// that valid data is available on the output bus (dout         )..dbiterr        (             ), // 1-bit output: Double Bit Error: Indicates that the ECC decoder detected// a double-bit error and data in the FIFO core is corrupted..dout           (xpm_dout     ), // READ_DATA_WIDTH-bit output: Read Data: The output data bus is driven// when reading the FIFO..empty          (xpm_empty    ), // 1-bit output: Empty Flag: When asserted, this signal indicates that the// FIFO is empty. Read requests are ignored when the FIFO is empty,// initiating a read while empty is not destructive to the FIFO..full           (xpm_full     ), // 1-bit output: Full Flag: When asserted, this signal indicates that the// FIFO is full. Write requests are ignored when the FIFO is full,// initiating a write when the FIFO is full is not destructive to the// contents of the FIFO..overflow       (             ), // 1-bit output: Overflow: This signal indicates that a write request// (wren) during the prior clock cycle was rejected, because the FIFO is// full. Overflowing the FIFO is not destructive to the contents of the// FIFO..prog_empty     (             ), // 1-bit output: Programmable Empty: This signal is asserted when the// number of words in the FIFO is less than or equal to the programmable// empty threshold value. It is de-asserted when the number of words in// the FIFO exceeds the programmable empty threshold value..prog_full      (xpm_prog_full), // 1-bit output: Programmable Full: This signal is asserted when the// number of words in the FIFO is greater than or equal to the// programmable full threshold value. It is de-asserted when the number of// words in the FIFO is less than the programmable full threshold value..rd_data_count  (             ), // RD_DATA_COUNT_WIDTH-bit output: Read Data Count: This bus indicates the// number of words read from the FIFO..rd_rst_busy    (             ), // 1-bit output: Read Reset Busy: Active-High indicator that the FIFO read// domain is currently in a reset state..sbiterr        (             ), // 1-bit output: Single Bit Error: Indicates that the ECC decoder detected// and fixed a single-bit error..underflow      (             ), // 1-bit output: Underflow: Indicates that the read request (rd_en) during// the previous clock cycle was rejected because the FIFO is empty. Under// flowing the FIFO is not destructive to the FIFO..wr_ack         (             ), // 1-bit output: Write Acknowledge: This signal indicates that a write// request(wr_en) during the prior clock cycle is succeeded..wr_data_count  (             ), // WR_DATA_COUNT_WIDTH-bit output: Write Data Count: This bus indicates// the number of words written into the FIFO..wr_rst_busy    (             ), // 1-bit output: Write Reset Busy: Active-High indicator that the FIFO// write domain is currently in a reset state..din            (xpm_din      ), // WRITE_DATA_WIDTH-bit input: Write Data: The input data bus used when// writing the FIFO..injectdbiterr  (1'b0         ), // 1-bit input: Double Bit Error Injection: Injects a double bit error if// the ECC feature is used on block RAMs or UltraRAM macros..injectsbiterr  (1'b0         ), // 1-bit input: Single Bit Error Injection: Injects a single bit error if// the ECC feature is used on block RAMs or UltraRAM macros..rd_en          (xpm_rd_en    ), // 1-bit input: Read Enable: If the FIFO is not empty, asserting this// signal causes data(on dout) to be read from the FIFO. Must be held// active-low when rd_rst_busy is active high..rst            (~srst_n      ), // 1-bit input: Reset: Must be synchronous to wr_clk. The clock(s) can be// unstable at the time of applying reset, but reset must be released only// after the clock(s) is/are stable..sleep          (1'b0         ), // 1-bit input: Dynamic power saving- If sleep is High, the memory/fifo// block is in power saving mode..wr_clk         (sclk         ), // 1-bit input: Write clock: Used for write operation. wr_clk must be a// free running clock..wr_en          (xpm_wr_en    )  // 1-bit input: Write Enable: If the FIFO is not full, asserting this// signal causes data(on din) to be written to the FIFO Must be held// active-low when rst or wr_rst_busy or rd_rst_busy is active high);      endmodule

32bit写,8bit读
当din的位宽和dout的位宽非对称时。举个栗子:当din的位宽为32bit,dout的位宽为8bit时。

FIFO Generator IP核 高8bit先输出,低8bit最后输出

XPM_FIFO原语 低8bit先输出,高8bit最后输出

下面为RTL设计文件和测试结果。

//-----------------------------------------------------------------------------
//  
//  Copyright (c) JoeJoe.
//
//  Project  : fifo_test
//  Module   : fifo_test.v
//  Parent   : None
//  Children : None
//
//  Description: 
//     
//     
//     
//
//  Parameters:
//    
//    
//    
//
//  Local Parameters:
//
//  Notes       : 
//
//  Multicycle and False Paths
//    Some exist, embedded within the submodules. See the submodule
//    descriptions.
//`timescale 1ns/1psmodule fifo_test (input sclk,input srst_n
);//***************************************************************************
// Parameter definitions
//***************************************************************************//***************************************************************************
// Reg declarations
//***************************************************************************reg [2:0] wait_cnt;reg wr_en;reg [31:0] din;wire rd_en;wire prog_full;wire full;wire empty;wire [7:0] dout;reg xpm_wr_en;reg [31:0] xpm_din;wire xpm_rd_en;wire xpm_prog_full;wire xpm_full;wire xpm_empty;wire [7:0] xpm_dout;//***************************************************************************
// Wire declarations
//***************************************************************************//***************************************************************************
// Code
//***************************************************************************// 等待XPM FIFO not busyalways @(posedge sclk) beginif (srst_n == 1'b0) beginwait_cnt <= 'd0;endelse beginif (wait_cnt == 'd7) beginwait_cnt <= wait_cnt;endelse beginwait_cnt <= wait_cnt + 'd1;endendend// 非满就写always @(posedge sclk) beginif (srst_n == 1'b0) beginwr_en <= 1'b0;din <= 'd0;endelse beginif (prog_full == 1'b1) beginwr_en <= 1'b0;din <= din;endelse if (wait_cnt == 'd7) beginwr_en <= 1'b1;din <= din + 'd1;endelse beginwr_en <= 1'b0;din <= 'd0;endendend// 非空就读assign rd_en = ~empty;// 非满就写always @(posedge sclk) beginif (srst_n == 1'b0) beginxpm_wr_en <= 1'b0;xpm_din <= 'd0;endelse beginif (xpm_prog_full == 1'b1) beginxpm_wr_en <= 1'b0;xpm_din <= xpm_din;endelse if (wait_cnt == 'd7) beginxpm_wr_en <= 1'b1;xpm_din <= xpm_din + 'd1;endelse beginxpm_wr_en <= 1'b0;xpm_din <= 'd0;endendend// 非空就读assign xpm_rd_en = ~xpm_empty;// fifo_generator_0 U_FIFO_GENERATOR_0 (//      .clk              ( sclk           ) // input wire clk//     ,.srst             ( ~srst_n        ) // input wire srst//     ,.din              ( din            ) // input wire [7 : 0] din//     ,.wr_en            ( wr_en          ) // input wire wr_en//     ,.rd_en            ( rd_en          ) // input wire rd_en//     ,.dout             ( dout           ) // output wire [31 : 0] dout//     ,.full             ( full           ) // output wire full//     ,.empty            ( empty          ) // output wire empty//     ,.prog_full        ( prog_full      ) // output wire prog_full// );fifo_generator_1 U_FIFO_GENERATOR_1 (.clk              ( sclk           ) // input wire clk,.srst             ( ~srst_n        ) // input wire srst,.din              ( din            ) // input wire [31 : 0] din,.wr_en            ( wr_en          ) // input wire wr_en,.rd_en            ( rd_en          ) // input wire rd_en,.dout             ( dout           ) // output wire [7 : 0] dout,.full             ( full           ) // output wire full,.empty            ( empty          ) // output wire empty,.prog_full        ( prog_full      ) // output wire prog_full);xpm_fifo_sync #(.DOUT_RESET_VALUE   ( "0"      ), // String.ECC_MODE           ( "no_ecc" ), // String.FIFO_MEMORY_TYPE   ( "block"  ), // String.FIFO_READ_LATENCY  ( 0        ), // DECIMAL.FIFO_WRITE_DEPTH   ( 256      ), // DECIMAL.FULL_RESET_VALUE   ( 0        ), // DECIMAL.PROG_EMPTY_THRESH  ( 10       ), // DECIMAL.PROG_FULL_THRESH   ( 125      ), // DECIMAL.RD_DATA_COUNT_WIDTH( 1        ), // DECIMAL.READ_DATA_WIDTH    ( 8        ), // DECIMAL.READ_MODE          ( "fwft"   ), // String.SIM_ASSERT_CHK     ( 0        ), // DECIMAL; 0=disable simulation messages, 1=enable simulation messages.USE_ADV_FEATURES   ( "0707"   ), // String.WAKEUP_TIME        ( 0        ), // DECIMAL.WRITE_DATA_WIDTH   ( 32       ), // DECIMAL.WR_DATA_COUNT_WIDTH( 1        )  // DECIMAL)U_XPM_FIFO_SYNC (.almost_empty   (             ), // 1-bit output: Almost Empty : When asserted, this signal indicates that// only one more read can be performed before the FIFO goes to empty..almost_full    (             ), // 1-bit output: Almost Full: When asserted, this signal indicates that// only one more write can be performed before the FIFO is full..data_valid     (             ), // 1-bit output: Read Data Valid: When asserted, this signal indicates// that valid data is available on the output bus (dout         )..dbiterr        (             ), // 1-bit output: Double Bit Error: Indicates that the ECC decoder detected// a double-bit error and data in the FIFO core is corrupted..dout           (xpm_dout     ), // READ_DATA_WIDTH-bit output: Read Data: The output data bus is driven// when reading the FIFO..empty          (xpm_empty    ), // 1-bit output: Empty Flag: When asserted, this signal indicates that the// FIFO is empty. Read requests are ignored when the FIFO is empty,// initiating a read while empty is not destructive to the FIFO..full           (xpm_full     ), // 1-bit output: Full Flag: When asserted, this signal indicates that the// FIFO is full. Write requests are ignored when the FIFO is full,// initiating a write when the FIFO is full is not destructive to the// contents of the FIFO..overflow       (             ), // 1-bit output: Overflow: This signal indicates that a write request// (wren) during the prior clock cycle was rejected, because the FIFO is// full. Overflowing the FIFO is not destructive to the contents of the// FIFO..prog_empty     (             ), // 1-bit output: Programmable Empty: This signal is asserted when the// number of words in the FIFO is less than or equal to the programmable// empty threshold value. It is de-asserted when the number of words in// the FIFO exceeds the programmable empty threshold value..prog_full      (xpm_prog_full), // 1-bit output: Programmable Full: This signal is asserted when the// number of words in the FIFO is greater than or equal to the// programmable full threshold value. It is de-asserted when the number of// words in the FIFO is less than the programmable full threshold value..rd_data_count  (             ), // RD_DATA_COUNT_WIDTH-bit output: Read Data Count: This bus indicates the// number of words read from the FIFO..rd_rst_busy    (             ), // 1-bit output: Read Reset Busy: Active-High indicator that the FIFO read// domain is currently in a reset state..sbiterr        (             ), // 1-bit output: Single Bit Error: Indicates that the ECC decoder detected// and fixed a single-bit error..underflow      (             ), // 1-bit output: Underflow: Indicates that the read request (rd_en) during// the previous clock cycle was rejected because the FIFO is empty. Under// flowing the FIFO is not destructive to the FIFO..wr_ack         (             ), // 1-bit output: Write Acknowledge: This signal indicates that a write// request(wr_en) during the prior clock cycle is succeeded..wr_data_count  (             ), // WR_DATA_COUNT_WIDTH-bit output: Write Data Count: This bus indicates// the number of words written into the FIFO..wr_rst_busy    (             ), // 1-bit output: Write Reset Busy: Active-High indicator that the FIFO// write domain is currently in a reset state..din            (xpm_din      ), // WRITE_DATA_WIDTH-bit input: Write Data: The input data bus used when// writing the FIFO..injectdbiterr  (1'b0         ), // 1-bit input: Double Bit Error Injection: Injects a double bit error if// the ECC feature is used on block RAMs or UltraRAM macros..injectsbiterr  (1'b0         ), // 1-bit input: Single Bit Error Injection: Injects a single bit error if// the ECC feature is used on block RAMs or UltraRAM macros..rd_en          (xpm_rd_en    ), // 1-bit input: Read Enable: If the FIFO is not empty, asserting this// signal causes data(on dout) to be read from the FIFO. Must be held// active-low when rd_rst_busy is active high..rst            (~srst_n      ), // 1-bit input: Reset: Must be synchronous to wr_clk. The clock(s) can be// unstable at the time of applying reset, but reset must be released only// after the clock(s) is/are stable..sleep          (1'b0         ), // 1-bit input: Dynamic power saving- If sleep is High, the memory/fifo// block is in power saving mode..wr_clk         (sclk         ), // 1-bit input: Write clock: Used for write operation. wr_clk must be a// free running clock..wr_en          (xpm_wr_en    )  // 1-bit input: Write Enable: If the FIFO is not full, asserting this// signal causes data(on din) to be written to the FIFO Must be held// active-low when rst or wr_rst_busy or rd_rst_busy is active high);      endmodule

8bit写,32bit读
参考文档如下:《FIFO Generator v13.2 Product Guide》(PG057)
FIFO Generator IP
支持的非对称比

FIFO Generator IP,小位宽写,大位宽读,大端。
大转小
大转小时序图
FIFO Generator IP,大位宽写,小位宽读。
小转大
小转大时序图
疑问:XPM_FIFO为什么不可以设置大小端,以及为什么不和FIFO Generator IP统一???

这篇关于关于FIFO Generator IP和XPM_FIFO在涉及位宽转换上的区别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/993968

相关文章

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

JAVA覆盖和重写的区别及说明

《JAVA覆盖和重写的区别及说明》非静态方法的覆盖即重写,具有多态性;静态方法无法被覆盖,但可被重写(仅通过类名调用),二者区别在于绑定时机与引用类型关联性... 目录Java覆盖和重写的区别经常听到两种话认真读完上面两份代码JAVA覆盖和重写的区别经常听到两种话1.覆盖=重写。2.静态方法可andro

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

MyBatis中$与#的区别解析

《MyBatis中$与#的区别解析》文章浏览阅读314次,点赞4次,收藏6次。MyBatis使用#{}作为参数占位符时,会创建预处理语句(PreparedStatement),并将参数值作为预处理语句... 目录一、介绍二、sql注入风险实例一、介绍#(井号):MyBATis使用#{}作为参数占位符时,会

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

Javaee多线程之进程和线程之间的区别和联系(最新整理)

《Javaee多线程之进程和线程之间的区别和联系(最新整理)》进程是资源分配单位,线程是调度执行单位,共享资源更高效,创建线程五种方式:继承Thread、Runnable接口、匿名类、lambda,r... 目录进程和线程进程线程进程和线程的区别创建线程的五种写法继承Thread,重写run实现Runnab

C++中NULL与nullptr的区别小结

《C++中NULL与nullptr的区别小结》本文介绍了C++编程中NULL与nullptr的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编... 目录C++98空值——NULLC++11空值——nullptr区别对比示例 C++98空值——NUL

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Go语言中make和new的区别及说明

《Go语言中make和new的区别及说明》:本文主要介绍Go语言中make和new的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 概述2 new 函数2.1 功能2.2 语法2.3 初始化案例3 make 函数3.1 功能3.2 语法3.3 初始化