PyTorch之list、ndarray、tensor数据类型相互转换

2024-05-16 02:12

本文主要是介绍PyTorch之list、ndarray、tensor数据类型相互转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

温故而知新,可以为师矣!

一、参考资料

python中list、numpy、torch.tensor之间的相互转换

二、常用操作

list 转 numpy

ndarray = np.array(list)

import numpy as npa_list = [[j for j in range(5)] for i in range(3)]
a_ndarray = np.array(a_list)print(f'a_list = {a_list}, type of a_list: {type(a_list)}')
print(f'a_ndarray = {a_ndarray}, type of a_ndarray: {type(a_ndarray)}')

输出结果

a_list = [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]], type of a_list: <class 'list'>
a_ndarray = [[0 1 2 3 4][0 1 2 3 4][0 1 2 3 4]], type of a_ndarray: <class 'numpy.ndarray'>

list 转 torch.Tensor

如何将装有tensor的多维list转化为torch.Tensor类型

普通 list 转 torch.Tensor

tensor=torch.Tensor(list)

# 普通list转tensor
a_list = [[j for j in range(5)] for i in range(3)]
A_tensor = torch.Tensor(a_list)print(f'a_list = {a_list}, type of a_list: {type(a_list)}')
print(f'A_tensor = {A_tensor}, type of A_tensor: {type(A_tensor)}')

注意:将list中元素类型为int,转换为tensor后,类型转换为float,如果希望转换为int,则需要加上类型。

A_tensor = torch.Tensor(a_list)  # 默认为float
A_tensor = torch.IntTensor(a_list)  # 转为int

输出结果

a_list = [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]], type of a_list: <class 'list'>
A_tensor = tensor([[0., 1., 2., 3., 4.],[0., 1., 2., 3., 4.],[0., 1., 2., 3., 4.]]), type of A_tensor: <class 'torch.Tensor'>

list包含多维tensor

# list包含tensor,使用torch.Tensor会报错
a = torch.rand((2, 3))
a_list = [a for _ in range(3)]
A_tensor = torch.Tensor(a_list)

输出结果

raceback (most recent call last):File "/PATH/TO/demo.py", line 13, in <module>A = torch.Tensor(a_list)
ValueError: only one element tensors can be converted to Python scalars

解决办法

如果该方法无法解决该问题,请参考下文的FAQ。

# 在cpu上
A_tensor= torch.tensor([item.detach().numpy() for item in a_list])# 在gpu上
A_tensor= torch.tensor([item.cpu().detach().numpy() for item in a_list]).cuda() 

注意:因为 gpu上的 tensor 不能直接转为 numpy,需要先在 cpu 上完成操作,再回到 gpu 上。

numpy 转 list

list = ndarray.tolist()

import numpy as npa_list = [[j for j in range(5)] for i in range(3)]
a_ndarray = np.array(a_list)  # ndarray 转为 ndarray
A_list = a_ndarray.tolist()  # ndarray 转为 listprint(f'a_list = {a_list}, type of a_list: {type(a_list)}')
print(f'a_ndarray = {a_ndarray}, type of a_ndarray: {type(a_ndarray)}')
print(f'A_list = {A_list}, type of A_list: {type(A_list)}')

输出结果

a_list = [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]], type of a_list: <class 'list'>
a_ndarray = [[0 1 2 3 4][0 1 2 3 4][0 1 2 3 4]], type of a_ndarray: <class 'numpy.ndarray'>
A_list = [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]], type of A_list: <class 'list'>

numpy 转 torch.Tensor

tensor = torch.from_numpy(ndarray)

import torch
import numpy as npa_list = [[j for j in range(5)] for i in range(3)]
a_ndarray = np.array(a_list)
a_tensor = torch.from_numpy(a_ndarray)print(f'a_list = {a_list}, type of a_list: {type(a_list)}')
print(f'a_ndarray = {a_ndarray}, type of a_ndarray: {type(a_ndarray)}')
print(f'a_tensor = {a_tensor}, type of a_tensor: {type(a_tensor)}')

输出结果

a_list = [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]], type of a_list: <class 'list'>
a_ndarray = [[0 1 2 3 4][0 1 2 3 4][0 1 2 3 4]], type of a_ndarray: <class 'numpy.ndarray'>
a_tensor = tensor([[0, 1, 2, 3, 4],[0, 1, 2, 3, 4],[0, 1, 2, 3, 4]]), type of a_tensor: <class 'torch.Tensor'>

torch.Tensor 转 numpy

# CPU
ndarray = tensor.numpy()# GPU
ndarray = tensor.cpu().numpy()

注意:gpu上的tensor不能直接转为numpy,须要先在 cpu 上完成操做,再回到 gpu 上。

import torcha_list = [[j for j in range(5)] for i in range(3)]
# list转tensor
A_tensor = torch.Tensor(a_list)# CPU
A_ndarray = A_tensor.numpy()print(f'a_list = {a_list}, type of a_list: {type(a_list)}')
print(f'A_tensor = {A_tensor}, type of A_tensor: {type(A_tensor)}')
print(f'A_ndarray = {A_ndarray}, type of A_ndarray: {type(A_ndarray)}')

输出结果

a_list = [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]], type of a_list: <class 'list'>
A_tensor = tensor([[0., 1., 2., 3., 4.],[0., 1., 2., 3., 4.],[0., 1., 2., 3., 4.]]), type of A_tensor: <class 'torch.Tensor'>
A_ndarray = [[0. 1. 2. 3. 4.][0. 1. 2. 3. 4.][0. 1. 2. 3. 4.]], type of A_ndarray: <class 'numpy.ndarray'>

torch.Tensor 转 list

tensor先转numpy,后转list。

list = tensor.numpy().tolist()

import torcha_list = [[j for j in range(5)] for i in range(3)]
# list转tensor
A_tensor = torch.Tensor(a_list)
# tensor先转numpy,再转list
A_list = A_tensor.numpy().tolist()print(f'a_list = {a_list}, type of a_list: {type(a_list)}')
print(f'A_tensor = {A_tensor}, type of A_tensor: {type(A_tensor)}')
print(f'A_list = {A_list}, type of A_list: {type(A_list)}')

输出结果

a_list = [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]], type of a_list: <class 'list'>
A_tensor = tensor([[0., 1., 2., 3., 4.],[0., 1., 2., 3., 4.],[0., 1., 2., 3., 4.]]), type of A_tensor: <class 'torch.Tensor'>
A_list = [[0.0, 1.0, 2.0, 3.0, 4.0], [0.0, 1.0, 2.0, 3.0, 4.0], [0.0, 1.0, 2.0, 3.0, 4.0]], type of A_list: <class 'list'>

三、FAQ

Q:ValueError: only one element tensors can be converted to Python scalars

Pytorch: list, numpy. Tensor 格式转化 (附 only one element tensors can be converted to Python scalars 解决)

ValueError:only one element tensors can be converted to Python scalars解决办法

错误原因:list包含多维tensor,导致类型转换错误。有以下两种解决方法。

方法一:torch.stack

通过torch.stack将包含tensor的多维list转换成tensor。
torch.stack要求两个输入的shape完全相同

b_tensor = torch.rand((2, 3))
b_list = [b_tensor for _ in range(3)]
B_tensor = torch.stack(b_list)print(f'b_tensor = {b_tensor}, type of b: {type(b_tensor)}')
print(f'b_list = {b_list}, type of b_list: {type(b_list)}')
print(f'B_tensor = {B_tensor}, type of B_tensor: {type(B_tensor)}, shape of B_tensor: {B_tensor.shape}')
b_tensor = tensor([[0.7443, 0.3041, 0.9545],[0.3092, 0.2747, 0.6717]]), type of b: <class 'torch.Tensor'>
b_list = [tensor([[0.7443, 0.3041, 0.9545],[0.3092, 0.2747, 0.6717]]), tensor([[0.7443, 0.3041, 0.9545],[0.3092, 0.2747, 0.6717]]), tensor([[0.7443, 0.3041, 0.9545],[0.3092, 0.2747, 0.6717]])], type of b_list: <class 'list'>
B_tensor = tensor([[[0.7443, 0.3041, 0.9545],[0.3092, 0.2747, 0.6717]],[[0.7443, 0.3041, 0.9545],[0.3092, 0.2747, 0.6717]],[[0.7443, 0.3041, 0.9545],[0.3092, 0.2747, 0.6717]]]), type of B_tensor: <class 'torch.Tensor'>, shape of B_tensor: torch.Size([3, 2, 3])

方法二:torch.cat

通过torch.cat将包含tensor的多维list转换成tensor。

b_tensor = torch.rand((2, 3))
b_list = [b_tensor for _ in range(3)]
B_tensor = torch.cat(b_list, 0)print(f'b_tensor = {b_tensor}, type of b: {type(b_tensor)}')
print(f'b_list = {b_list}, type of b_list: {type(b_list)}')
print(f'B_tensor = {B_tensor}, type of B_tensor: {type(B_tensor)}, shape of B_tensor: {B_tensor.shape}')
b_tensor = tensor([[0.4237, 0.4743, 0.5213],[0.0815, 0.6654, 0.8780]]), type of b: <class 'torch.Tensor'>
b_list = [tensor([[0.4237, 0.4743, 0.5213],[0.0815, 0.6654, 0.8780]]), tensor([[0.4237, 0.4743, 0.5213],[0.0815, 0.6654, 0.8780]]), tensor([[0.4237, 0.4743, 0.5213],[0.0815, 0.6654, 0.8780]])], type of b_list: <class 'list'>
B_tensor = tensor([[0.4237, 0.4743, 0.5213],[0.0815, 0.6654, 0.8780],[0.4237, 0.4743, 0.5213],[0.0815, 0.6654, 0.8780],[0.4237, 0.4743, 0.5213],[0.0815, 0.6654, 0.8780]]), type of B_tensor: <class 'torch.Tensor'>, shape of B_tensor: torch.Size([6, 3])

这篇关于PyTorch之list、ndarray、tensor数据类型相互转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/993577

相关文章

使用Java读取本地文件并转换为MultipartFile对象的方法

《使用Java读取本地文件并转换为MultipartFile对象的方法》在许多JavaWeb应用中,我们经常会遇到将本地文件上传至服务器或其他系统的需求,在这种场景下,MultipartFile对象非... 目录1. 基本需求2. 自定义 MultipartFile 类3. 实现代码4. 代码解析5. 自定

Java List 使用举例(从入门到精通)

《JavaList使用举例(从入门到精通)》本文系统讲解JavaList,涵盖基础概念、核心特性、常用实现(如ArrayList、LinkedList)及性能对比,介绍创建、操作、遍历方法,结合实... 目录一、List 基础概念1.1 什么是 List?1.2 List 的核心特性1.3 List 家族成

MySQL数据类型与表操作全指南( 从基础到高级实践)

《MySQL数据类型与表操作全指南(从基础到高级实践)》本文详解MySQL数据类型分类(数值、日期/时间、字符串)及表操作(创建、修改、维护),涵盖优化技巧如数据类型选择、备份、分区,强调规范设计与... 目录mysql数据类型详解数值类型日期时间类型字符串类型表操作全解析创建表修改表结构添加列修改列删除列

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

详解MySQL中JSON数据类型用法及与传统JSON字符串对比

《详解MySQL中JSON数据类型用法及与传统JSON字符串对比》MySQL从5.7版本开始引入了JSON数据类型,专门用于存储JSON格式的数据,本文将为大家简单介绍一下MySQL中JSON数据类型... 目录前言基本用法jsON数据类型 vs 传统JSON字符串1. 存储方式2. 查询方式对比3. 索引

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方