【光伏预测-粉丝福利】KOA-CNN-BiGRU-Attention实现光伏预测附matlab代码

2024-05-16 01:20

本文主要是介绍【光伏预测-粉丝福利】KOA-CNN-BiGRU-Attention实现光伏预测附matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

KOA-CNN-BiGRU-Attention实现光伏预测附matlab代码

KOA-CNN-BiGRU-Attention是一种神经网络模型,常用于光伏(太阳能光伏)预测任务。它结合了多个深度学习技术,包括卷积神经网络(Convolutional Neural Network,CNN)、双向门控循环单元(Bidirectional Gated Recurrent Unit,BiGRU)和注意力机制(Attention)。

下面是一个简单的KOA-CNN-BiGRU-Attention模型的示例实现,你可以根据具体需求进行调整和改进:

数据准备:
首先,你需要准备用于光伏预测的数据集。这通常包括历史的光伏发电数据和相关的天气数据。
数据预处理:
对于数据预处理的步骤,你可以考虑进行归一化、平滑处理等。确保将数据划分为训练集和测试集。
模型构建:
下面是KOA-CNN-BiGRU-Attention模型的构建步骤:
使用CNN提取输入数据的局部特征。你可以使用一维卷积层对时间序列数据进行特征提取。
将CNN的输出传递给BiGRU层,以捕捉输入数据的时序关系。
在BiGRU层之后,添加注意力机制层。它可以帮助模型关注输入序列中的重要部分。
最后,将注意力机制的输出连接到全连接层,用于最终的预测。
损失函数和优化器:
在模型训练过程中,你可以选择适当的损失函数(如均方误差)和优化器(如Adam)。
模型训练:
将准备好的训练数据输入到模型中,使用反向传播算法进行训练。可以设置合适的批次大小和迭代次数。
模型评估:
使用测试数据集对训练好的模型进行评估,计算预测结果与真实值之间的误差指标,如均方根误差(Root Mean Square Error,RMSE)。
模型预测:
对新的光伏数据使用训练好的模型进行预测。
需要注意的是,以上是一个简化的模型实现示例,实际应用中可能需要根据具体问题进行调整和改进。同时,模型的性能和预测结果也会受到数据质量、特征选择、超参数的选择等因素的影响,因此在实际应用中需要进行实验和调优。

% 导入数据并进行预处理
% 这里假设你已经准备好了输入数据X和目标数据Y,并进行了适当的预处理

% 构建KOA-CNN-BiGRU-Attention模型
inputSize = size(X, 2); % 输入数据的特征维度
outputSize = size(Y, 2); % 输出数据的维度

% 定义CNN层
numFilters = 32; % 卷积核数量
filterSize = 3; % 卷积核大小
poolSize = 2; % 池化窗口大小
cnnLayer = sequenceInputLayer(inputSize);
cnnLayer = [cnnLayer
convolution1dLayer(filterSize, numFilters, ‘Padding’, ‘same’)
reluLayer()
maxPooling1dLayer(poolSize, ‘Stride’, 2)];

% 定义BiGRU层
hiddenSize = 64; % 隐层大小
gruLayer = bilstmLayer(hiddenSize, ‘OutputMode’, ‘sequence’);

% 定义注意力机制层
attentionLayer = attentionLayer();

% 定义全连接层
fcLayer = fullyConnectedLayer(outputSize);

% 将网络层组合成网络模型
layers = [cnnLayer
gruLayer
attentionLayer
fcLayer
regressionLayer()];

% 定义训练选项
options = trainingOptions(‘adam’, …
‘MaxEpochs’, 50, …
‘MiniBatchSize’, 64, …
‘Verbose’, true);

% 训练模型
net = trainNetwork(X, Y, layers, options);

% 利用训练好的模型进行预测
predictions = predict(net, X_test);

这篇关于【光伏预测-粉丝福利】KOA-CNN-BiGRU-Attention实现光伏预测附matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/993470

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S