基于YOLOv5的道路裂缝检测,加入一种基于内容引导注意力(CGA)的混合融合提升2个多点

本文主要是介绍基于YOLOv5的道路裂缝检测,加入一种基于内容引导注意力(CGA)的混合融合提升2个多点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  💡💡💡本文主要内容:详细介绍道路裂缝检测整个过程,从数据集到训练模型到结果可视化分析。

  💡💡💡通过加入一种基于内容引导注意力(CGA)的混合融合提升检测性能,

特征融合创新 | 一种基于内容引导注意力(CGA)的混合融合 | IEEE TIP 2024 浙大 

map从原始的0.952提升至0.977

                                                               博主简介

AI小怪兽,YOLO骨灰级玩家,1)YOLOv5、v7、v8优化创新,轻松涨点和模型轻量化;2)目标检测、语义分割、OCR、分类等技术孵化,赋能智能制造,工业项目落地经验丰富;

原创自研系列, 2024年计算机视觉顶会创新点

《YOLOv8原创自研》

《YOLOv5原创自研》

《YOLOv7原创自研》

23年最火系列,内涵80+优化改进篇,涨点小能手,助力科研,好评率极高

《YOLOv8魔术师》

 《YOLOv7魔术师》

《YOLOv5/YOLOv7魔术师》

《RT-DETR魔术师》

应用系列篇:

《YOLO小目标检测》

《深度学习工业缺陷检测》

《YOLOv8-Pose关键点检测》

1.道路裂缝检测

传统的路面裂缝检测识别方法主要是依靠人工 进行检测,但人工检测工作效率低,作业风险系数 大,且容易受主观因素影响。由于近年来计算机视 觉和图像检测、目标识别技术的快速发展,研究者通 过人工选取裂缝特征,实现对路面裂缝的自动检测。 但人工选取特征具有很强的主观性,在特征选择上 的优劣决定了路面裂缝检测的性能。

1.1 数据集介绍 

数据集大小390张,类别["crack"] 

 

细节图: 

2.基于YOLOv5的手机顶盖焊缺陷检测

2.1 修改crack.yaml

train: ./data/crack/train.txt
val: ./data/crack/val.txt# number of classes
nc: 1# class names
names: ["crack"]

2.2 修改train.py 

def parse_opt(known=False):parser = argparse.ArgumentParser()parser.add_argument("--weights", type=str, default=ROOT / "weights/yolov5s.pt", help="initial weights path")parser.add_argument("--cfg", type=str, default="models/yolov9/yolov5s.yaml", help="model.yaml path")parser.add_argument("--data", type=str, default=ROOT / "data/crack.yaml", help="dataset.yaml path")parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch-high.yaml", help="hyperparameters path")parser.add_argument("--epochs", type=int, default=100, help="total training epochs")parser.add_argument("--batch-size", type=int, default=16, help="total batch size for all GPUs, -1 for autobatch")parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="train, val image size (pixels)")parser.add_argument("--rect", action="store_true", help="rectangular training")parser.add_argument("--resume", nargs="?", const=True, default=False, help="resume most recent training")parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")parser.add_argument("--noval", action="store_true", help="only validate final epoch")parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor")parser.add_argument("--noplots", action="store_true", help="save no plot files")parser.add_argument("--evolve", type=int, nargs="?", const=300, help="evolve hyperparameters for x generations")parser.add_argument("--evolve_population", type=str, default=ROOT / "data/hyps", help="location for loading population")

 2.3 结果可视化分析 

PR_curve.png

PR曲线中的P代表的是precision(精准率),R代表的是recall(召回率),其代表的是精准率与召回率的关系,一般情况下,将recall设置为横坐标,precision设置为纵坐标。PR曲线下围成的面积即AP,所有类别AP平均值即Map

3.加入一种基于内容引导注意力(CGA)的混合融合

特征融合创新 | 一种基于内容引导注意力(CGA)的混合融合 | IEEE TIP 2024 浙大

原文链接:YOLOv5独家原创改进: 特征融合创新 | 一种基于内容引导注意力(CGA)的混合融合 | IEEE TIP 2024 浙大-CSDN博客

我们提出了一种新的注意力机制,即内容引导注意力(CGA),以一种从粗到精的方式生成特定频道的SIMs。CGA通过输入特征引导SIM的生成,为每个通道分配唯一的SIM,使模型参加每个通道的重要区域。因此,可以强调特征中编码的更多有用信息,从而有效地提高性能。此外,提出了一种基于cgaba的混合融合方案,将编码器部分的低级特征与相应的高级特征有效融合。

map从原始的0.952提升至0.977

 

关注下方名片,即可获取源码。 

这篇关于基于YOLOv5的道路裂缝检测,加入一种基于内容引导注意力(CGA)的混合融合提升2个多点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/992474

相关文章

C# Onnx Yolov5 水果识别,人员识别,物品识别 人工智能

目录 先上效果 来电废话,但实用 网络成功案例实践易失败的原因 万物检测涉及技术  下载合集 关键代码 全部代码 实操vs2022安装关键 YOLO V5核心库编译 编写自己识别软件 更新相关依赖 标注字库文件 测试效果 名词解释YOLO 名词解释ONNX 源码 直播教学和作者 先上效果 来电废话,但实用 为何照做网络成功案例仍失败?软件与男

Java内存泄漏检测和分析介绍

在Java中,内存泄漏检测和分析是一个重要的任务,可以通过以下几种方式进行:   1. 使用VisualVM VisualVM是一个可视化工具,可以监控、分析Java应用程序的内存消耗。它可以显示堆内存、垃圾收集、线程等信息,并且可以对内存泄漏进行分析。 2. 使用Eclipse Memory Analyzer Eclipse Memory Analyzer(MAT)是一个强大的工具,可

基于CDMA的多用户水下无线光通信(3)——解相关多用户检测

继续上一篇博文,本文将介绍基于解相关的多用户检测算法。解相关检测器的优点是因不需要估计各个用户的接收信号幅值而具有抗远近效应的能力。常规的解相关检测器有运算量大和实时性差的缺点,本文针对异步CDMA的MAI主要来自干扰用户的相邻三个比特周期的特点,给出了基于相邻三个匹配滤波器输出数据的截断解相关检测算法。(我不知道怎么改公式里的字体,有的字母在公式中重复使用了,请根据上下文判断字母含义) 1

移动Web开发实战内容要点!!!

移动web开发 目录 移动web开发 第一章、Web开发标准与网页网站制作介绍 1.1Web开发标准 1.2网页基本构成元素 第二章、Web开发技术基础 2.1HTML的主要特点: 2.2HTML基本知识 2.3CSS样式 2.4JavaScript 第三章、打造移动Web应用程序 3.1为什么Android会成为主流操作系统 3.2测试应用程序 第四章、HTML5在移

算是一些Transformer学习当中的重点内容

一、基础概念         Transformer是一种神经网络结构,由Vaswani等人在2017年的论文Attentions All YouNeed”中提出,用于处理机器翻译、语言建模和文本生成等自然语言处理任务。Transformer同样是encoder-decoder的结构,只不过这里的“encoder”和“decoder”是由无数个同样结构的encoder层和decoder层堆叠组成

vuex的配置主要内容

1、state 作用:负责存储数据; 2、getters 作用:state计算属性(有缓存); 3、mutaions 作用:负责同步更新state数据 mutaions是唯一可以修改state数据的方式; 4、actions 作用:负责异步操作,例如发送网络请求,将请求到的数据通过commit触发mutaions来修改state; 5、modules 作用:负责模块化管理vuex数据。

前景检测算法_3(GMM)

因为监控发展的需求,目前前景检测的研究还是很多的,也出现了很多新的方法和思路。个人了解的大概概括为以下一些: 帧差、背景减除(GMM、CodeBook、 SOBS、 SACON、 VIBE、 W4、多帧平均……)、光流(稀疏光流、稠密光流)、运动竞争(Motion Competition)、运动模版(运动历史图像)、时间熵……等等。如果加上他们的改进版,那就是很大的一个家族了。

【论文复现|智能算法改进】一种基于多策略改进的鲸鱼算法

目录 1.算法原理2.改进点3.结果展示4.参考文献5.代码获取 1.算法原理 SCI二区|鲸鱼优化算法(WOA)原理及实现【附完整Matlab代码】 2.改进点 混沌反向学习策略 将混沌映射和反向学习策略结合,形成混沌反向学习方法,通过该方 法生成鲸鱼算法的初始种群。混沌序列采用 Tent 混沌映射: x i + 1 = { δ x i 0 < x i < 0.5

2023-2024 学年第二学期小学数学六年级期末质量检测模拟(制作:王胤皓)(90分钟)

word效果预览: 一、我会填 1. 1.\hspace{0.5em} 1. 一个多位数,亿位上是次小的素数,千位上是最小的质数的立方,十万位是 10 10 10 和 15 15 15 的最大公约数,万位是最小的合数,十位上的数既不是质数也不是合数,这个数是 ( \hspace{4em} ),约等于 ( \hspace{1em} ) 万 2. 2.\hspace{0.5em} 2.

如何关闭软件开机自启,提升电脑开机速度?

如何关闭软件开机自启,提升电脑开机速度?大家知道,很多软件在安装时默认都会设置为开机自动启动。但是,有很多软件在我们开机之后并不是马上需要用到的,开机启动的软件过多会导致电脑开机变慢。那么,如何关闭这些开机软件自启呢?我们可以按照以下步骤进行操作: 1.任务管理器设置方法 在任务栏上点击右键,然后选择“任务管理器”。在任务管理器弹出的窗口中,点击“启动”标签页,就可以看到开机启动项。