monocon 环境配置详细步骤

2024-05-15 15:44

本文主要是介绍monocon 环境配置详细步骤,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • 一、monocon简介
  • 二、环境配置
    • 1.下载
    • 2.创建环境
    • 3、安装其他包
  • 三、遇到问题
      • 1、AttributeError: module 'distutils' has no attribute 'version'
      • 2、libNVVM cannot be found. Do `conda install cudatoolkit`:
      • 3、解压kitti 3D 的数据遇到error: invalid zip file with overlapped components (possible zip bomb)
  • 四、训练结果
    • 1、训练
    • 2、结果
  • 五、测试
    • 1、测试命令
      • Inference
    • 2、测试结果


前言

3D 目标检测是


一、monocon简介

monocon 是一个延续CenterNet框架的3D 目标检测网络;在不依赖dcn 模块的情况下有不错的性能。

二、环境配置

1.下载

代码如下(示例):

git clone https://github.com/2gunsu/monocon-pytorch.gitcd monocon-pytorch

2.创建环境

conda create -n monocon-pytorch python=3.8
conda activate monocon-pytorch

3、安装其他包

pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118pip install -r requirements.txt 

三、遇到问题

1、AttributeError: module ‘distutils’ has no attribute ‘version’

python train.py
Traceback (most recent call last):File "train.py", line 6, in <module>from engine.monocon_engine import MonoconEngineFile "/devdata/deeplearn/cv/3D/monocon-pytorch/engine/monocon_engine.py", line 14, in <module>from engine.base_engine import BaseEngineFile "/devdata/deeplearn/cv/3D/monocon-pytorch/engine/base_engine.py", line 11, in <module>from torch.utils.tensorboard import SummaryWriterFile "/devdata/anaconda3/envs/monocon-pytorch/lib/python3.8/site-packages/torch/utils/tensorboard/__init__.py", line 4, in <module>LooseVersion = distutils.version.LooseVersion
AttributeError: module 'distutils' has no attribute 'version'

解决:

方法一:将setuptools版本降低到59.5.0
# If you use pip:
pip install setuptools==59.5.0# For pip3:
pip3 install setuptools==59.5.0# If you use conda:
conda install setuptools=59.5.0方法二:升级或者安装更高版本的torch
# If you use pip:
pip install torch==1.11.0# For pip3:
pip3 install torch==1.11.0# If you use conda:
conda install pytorch=1.11.0

2、libNVVM cannot be found. Do conda install cudatoolkit:

python train.py
Traceback (most recent call last):File "train.py", line 6, in <module>from engine.monocon_engine import MonoconEngineFile "/devdata/deeplearn/cv/3D/monocon-pytorch/engine/monocon_engine.py", line 15, in <module>from dataset.monocon_dataset import MonoConDatasetFile "/devdata/deeplearn/cv/3D/monocon-pytorch/dataset/monocon_dataset.py", line 11, in <module>from dataset.base_dataset import BaseKITTIMono3DDatasetFile "/devdata/deeplearn/cv/3D/monocon-pytorch/dataset/base_dataset.py", line 12, in <module>from engine.kitti_eval import kitti_evalFile "/devdata/deeplearn/cv/3D/monocon-pytorch/engine/kitti_eval/__init__.py", line 1, in <module>from .eval import kitti_eval, do_evalFile "/devdata/deeplearn/cv/3D/monocon-pytorch/engine/kitti_eval/eval.py", line 11, in <module>from kitti_eval.rotate_iou import rotate_iou_gpu_evalFile "/devdata/deeplearn/cv/3D/monocon-pytorch/engine/kitti_eval/../kitti_eval/__init__.py", line 1, in <module>from .eval import kitti_eval, do_evalFile "/devdata/deeplearn/cv/3D/monocon-pytorch/engine/kitti_eval/../kitti_eval/eval.py", line 11, in <module>from kitti_eval.rotate_iou import rotate_iou_gpu_evalFile "/devdata/deeplearn/cv/3D/monocon-pytorch/engine/kitti_eval/../kitti_eval/rotate_iou.py", line 283, in <module>def rotate_iou_kernel_eval(N,File "/devdata/anaconda3/envs/monocon-pytorch/lib/python3.8/site-packages/numba/cuda/decorators.py", line 115, in _jitdisp.compile(argtypes)File "/devdata/anaconda3/envs/monocon-pytorch/lib/python3.8/site-packages/numba/cuda/dispatcher.py", line 794, in compilekernel = _Kernel(self.py_func, argtypes, **self.targetoptions)File "/devdata/anaconda3/envs/monocon-pytorch/lib/python3.8/site-packages/numba/core/compiler_lock.py", line 35, in _acquire_compile_lockreturn func(*args, **kwargs)File "/devdata/anaconda3/envs/monocon-pytorch/lib/python3.8/site-packages/numba/cuda/dispatcher.py", line 75, in __init__cres = compile_cuda(self.py_func, types.void, self.argtypes,File "/devdata/anaconda3/envs/monocon-pytorch/lib/python3.8/site-packages/numba/core/compiler_lock.py", line 35, in _acquire_compile_lockreturn func(*args, **kwargs)File "/devdata/anaconda3/envs/monocon-pytorch/lib/python3.8/site-packages/numba/cuda/compiler.py", line 210, in compile_cudacres = compiler.compile_extra(typingctx=typingctx,File "/devdata/anaconda3/envs/monocon-pytorch/lib/python3.8/site-packages/numba/core/compiler.py", line 716, in compile_extrareturn pipeline.compile_extra(func)File "/devdata/anaconda3/envs/monocon-pytorch/lib/python3.8/site-packages/numba/core/compiler.py", line 452, in compile_extrareturn self._compile_bytecode()File "/devdata/anaconda3/envs/monocon-pytorch/lib/python3.8/site-packages/numba/core/compiler.py", line 520, in _compile_bytecodereturn self._compile_core()File "/devdata/anaconda3/envs/monocon-pytorch/lib/python3.8/site-packages/numba/core/compiler.py", line 499, in _compile_coreraise eFile "/devdata/anaconda3/envs/monocon-pytorch/lib/python3.8/site-packages/numba/core/compiler.py", line 486, in _compile_corepm.run(self.state)File "/devdata/anaconda3/envs/monocon-pytorch/lib/python3.8/site-packages/numba/core/compiler_machinery.py", line 368, in runraise patched_exceptionFile "/devdata/anaconda3/envs/monocon-pytorch/lib/python3.8/site-packages/numba/core/compiler_machinery.py", line 356, in runself._runPass(idx, pass_inst, state)File "/devdata/anaconda3/envs/monocon-pytorch/lib/python3.8/site-packages/numba/core/compiler_lock.py", line 35, in _acquire_compile_lockreturn func(*args, **kwargs)File "/devdata/anaconda3/envs/monocon-pytorch/lib/python3.8/site-packages/numba/core/compiler_machinery.py", line 311, in _runPassmutated |= check(pss.run_pass, internal_state)File "/devdata/anaconda3/envs/monocon-pytorch/lib/python3.8/site-packages/numba/core/compiler_machinery.py", line 273, in checkmangled = func(compiler_state)File "/devdata/anaconda3/envs/monocon-pytorch/lib/python3.8/site-packages/numba/core/typed_passes.py", line 105, in run_passtypemap, return_type, calltypes, errs = type_inference_stage(File "/devdata/anaconda3/envs/monocon-pytorch/lib/python3.8/site-packages/numba/core/typed_passes.py", line 83, in type_inference_stageerrs = infer.propagate(raise_errors=raise_errors)File "/devdata/anaconda3/envs/monocon-pytorch/lib/python3.8/site-packages/numba/core/typeinfer.py", line 1086, in propagateraise errors[0]
numba.core.errors.TypingError: Failed in cuda mode pipeline (step: nopython frontend)
Failed in cuda mode pipeline (step: nopython frontend)
Failed in cuda mode pipeline (step: nopython frontend)
Internal error at <numba.core.typeinfer.CallConstraint object at 0x7f2e00c0a8b0>.
libNVVM cannot be found. Do `conda install cudatoolkit`:
[Errno 2] No such file or directory: '/usr/local/cuda-11.8:/nvvm/lib64'
During: resolving callee type: type(CUDADispatcher(<function rbbox_to_corners at 0x7f2e01e80550>))
During: typing of call at /devdata/deeplearn/cv/3D/monocon-pytorch/engine/kitti_eval/../kitti_eval/rotate_iou.py (241)Enable logging at debug level for details.File "engine/kitti_eval/rotate_iou.py", line 241:
def inter(rbbox1, rbbox2):<source elided>rbbox_to_corners(corners1, rbbox1)^During: resolving callee type: type(CUDADispatcher(<function inter at 0x7f2e01e51700>))
During: typing of call at /devdata/deeplearn/cv/3D/monocon-pytorch/engine/kitti_eval/../kitti_eval/rotate_iou.py (269)File "engine/kitti_eval/rotate_iou.py", line 269:
def devRotateIoUEval(rbox1, rbox2, criterion=-1):<source elided>area2 = rbox2[2] * rbox2[3]area_inter = inter(rbox1, rbox2)^During: resolving callee type: type(CUDADispatcher(<function devRotateIoUEval at 0x7f2e01e518b0>))
During: typing of call at /devdata/deeplearn/cv/3D/monocon-pytorch/engine/kitti_eval/../kitti_eval/rotate_iou.py (332)File "engine/kitti_eval/rotate_iou.py", line 332:
def rotate_iou_kernel_eval(N,<source elided>tx * K + i)dev_iou[offset] = devRotateIoUEval(block_qboxes[i * 5:i * 5 + 5],

解决办法:

pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118
conda install cudatoolkit==11.8 -c nvidia //安装对应版本的cuda

3、解压kitti 3D 的数据遇到error: invalid zip file with overlapped components (possible zip bomb)

解决办法:安装7z 来解压

sudo apt-get install p7zip
sudo apt-get install p7zip-full
sudo apt-get install p7zip-rar7z x 001.zip //001.zip 是需要解压的文件

四、训练结果

1、训练

python train.py

2、结果

[2024-05-15 06:03:10] Evaluating on Epoch 200...
Collecting Results...: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 472/472 [04:16<00:00,  1.84it/s]----------- Eval Results ------------
Pedestrian AP40@0.50, 0.50, 0.50:
bbox AP40:67.7988, 54.6922, 47.5099
bev  AP40:2.6367, 2.3894, 1.8246
3d   AP40:1.9083, 1.6483, 1.5825
aos  AP40:55.60, 44.47, 38.21
Pedestrian AP40@0.50, 0.25, 0.25:
bbox AP40:67.7988, 54.6922, 47.5099
bev  AP40:16.7131, 14.1143, 11.7589
3d   AP40:15.5213, 13.6702, 11.4670
aos  AP40:55.60, 44.47, 38.21
Cyclist AP40@0.50, 0.50, 0.50:
bbox AP40:63.4784, 37.8742, 34.3940
bev  AP40:6.7544, 3.7150, 3.0675
3d   AP40:5.1372, 2.6349, 2.6652
aos  AP40:58.13, 34.36, 31.23
Cyclist AP40@0.50, 0.25, 0.25:
bbox AP40:63.4784, 37.8742, 34.3940
bev  AP40:24.8584, 14.0738, 12.7809
3d   AP40:22.3357, 12.2825, 11.7030
aos  AP40:58.13, 34.36, 31.23
Car AP40@0.70, 0.70, 0.70:
bbox AP40:98.3601, 89.8058, 82.5364
bev  AP40:34.9062, 24.2195, 20.8772
3d   AP40:24.4504, 17.9385, 15.3246
aos  AP40:97.97, 89.21, 81.42
Car AP40@0.70, 0.50, 0.50:
bbox AP40:98.3601, 89.8058, 82.5364
bev  AP40:70.2495, 50.6545, 45.7686
3d   AP40:64.2237, 46.7250, 40.8438
aos  AP40:97.97, 89.21, 81.42Overall AP40@easy, moderate, hard:
bbox AP40:76.5458, 60.7907, 54.8134
bev  AP40:14.7658, 10.1080, 8.5898
3d   AP40:10.4986, 7.4072, 6.5241
aos  AP40:70.57, 56.01, 50.29
-------------------------------------
[2024-05-15 06:07:38] Checkpoint is saved to 'checkpoints/epoch_200.pth'.
[2024-05-15 06:07:39] Checkpoint is saved to 'checkpoints/epoch_200_final.pth'.

五、测试

1、测试命令

### Evaluation
```bash
python test.py  --config_file       [FILL]      # Config file (.yaml file)--checkpoint_file   [FILL]      # Checkpoint file (.pth file)--gpu_id            [Optional]  # Index of GPU to use for testing (Default: 0)--evaluate                      # Perform evaluation (Quantitative Results)

Inference

python test.py  --config_file       [FILL]      # Config file (.yaml file)--checkpoint_file   [FILL]      # Checkpoint file (.pth file)--visualize                     # Perform visualization (Qualitative Results)--gpu_id            [Optional]  # Index of GPU to use for testing (Default: 0)--save_dir          [FILL]      # Path where visualization results will be saved topython test.py --config_file /devdata/deeplearn/cv/3D/monocon-pytorch/config.yaml --checkpoint_file /devdata/deeplearn/cv/3D/monocon-pytorch/checkpoints/epoch_200_final.pth --visualize --gpu_id 0 --save_dir /devdata/deeplearn/cv/3D/monocon-pytorch/result --visualize

2、测试结果

2D 效果
3D 效果

bev效果

这篇关于monocon 环境配置详细步骤的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/992240

相关文章

IDEA中配置Tomcat全过程

《IDEA中配置Tomcat全过程》文章介绍了在IDEA中配置Tomcat的六步流程,包括添加服务器、配置部署选项、设置应用服务器及启动,并提及Maven依赖可能因约定大于配置导致问题,需检查依赖版本... 目录第一步第二步第三步第四步第五步第六步总结第一步选择这个方框第二步选择+号,找到Tomca

Win10安装Maven与环境变量配置过程

《Win10安装Maven与环境变量配置过程》本文介绍Maven的安装与配置方法,涵盖下载、环境变量设置、本地仓库及镜像配置,指导如何在IDEA中正确配置Maven,适用于Java及其他语言项目的构建... 目录Maven 是什么?一、下载二、安装三、配置环境四、验证测试五、配置本地仓库六、配置国内镜像地址

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Apache Ignite 与 Spring Boot 集成详细指南

《ApacheIgnite与SpringBoot集成详细指南》ApacheIgnite官方指南详解如何通过SpringBootStarter扩展实现自动配置,支持厚/轻客户端模式,简化Ign... 目录 一、背景:为什么需要这个集成? 二、两种集成方式(对应两种客户端模型) 三、方式一:自动配置 Thick

Debian系和Redhat系防火墙配置方式

《Debian系和Redhat系防火墙配置方式》文章对比了Debian系UFW和Redhat系Firewalld防火墙的安装、启用禁用、端口管理、规则查看及注意事项,强调SSH端口需开放、规则持久化,... 目录Debian系UFW防火墙1. 安装2. 启用与禁用3. 基本命令4. 注意事项5. 示例配置R

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

2025版mysql8.0.41 winx64 手动安装详细教程

《2025版mysql8.0.41winx64手动安装详细教程》本文指导Windows系统下MySQL安装配置,包含解压、设置环境变量、my.ini配置、初始化密码获取、服务安装与手动启动等步骤,... 目录一、下载安装包二、配置环境变量三、安装配置四、启动 mysql 服务,修改密码一、下载安装包安装地

Redis MCP 安装与配置指南

《RedisMCP安装与配置指南》本文将详细介绍如何安装和配置RedisMCP,包括快速启动、源码安装、Docker安装、以及相关的配置参数和环境变量设置,感兴趣的朋友一起看看吧... 目录一、Redis MCP 简介二、安www.chinasem.cn装 Redis MCP 服务2.1 快速启动(推荐)2.