动规解决01背包/完全背包精讲

2024-05-15 15:36

本文主要是介绍动规解决01背包/完全背包精讲,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

还不会用动态规划解决01背包/完全背包?看这一篇文章就够了!

首先我们要明白什么是01背包和完全背包。

背包问题总体问法就是:

你有一个背包,最多能容纳的体积是V。

现在有n个物品,第i个物品的体积为vi​ ,价值为wi​。

现在有n种物品,每种物品有任意多个,第i种物品的体积为vi​ ,价值为wi​。

(1)求这个背包至多能装多大价值的物品?

(2)若背包恰好装满,求至多能装多大价值的物品?

根据物品个数是唯一还是无限多个,如果只能装一个,就是01背包问题;如果同一个物品能装无限多个,就是完全背包问题。

问法的区别:

同样也是分为两类,第一种就是必须将背包恰好装满,第二种问法是背包不必装满。

在弄清楚什么是01背包和完全背包后,我们来正式学习如何解决这类问题吧!


我们首先来详细讲解01背包和完全背包的母题(模板),然后会有相应的例题,同样也有详解给到大家!

一、01背包

【模板】01背包_牛客题霸_牛客网 (nowcoder.com)

我们先解决第一问,背包没有必须装满的情况下。

用动态规划解决问题有下面的标准步骤:

1、状态表示:

dp[i][j] 表示从前i个物品中挑选,总体积不超过j,所有选法中能挑选出的最大价值。

有同学会问,状态表示为什么是这样的呢?因为这样我们会包含物品个数和体积,也没必要多想,可以直接记住!

2、状态转移方程

根据最后一步的状况,分情况讨论。

这里的dp[i][j]分为两种情况:

  1. 不选i物品:dp[i-1][j]:此时状态表示就是第i-1个物品状态,直接照抄即可
  2. 选i物品:dp[i-1][j-v[i]]+w[i]:因为我们已经挑选了第i个物品,因此第i个物品的价值一定是先加上的。在我们选了第i个物品的情况下,我们就需要找在前i-1个物品中体积等于j-v[i]的状态。当然这里的前提是必须 j-v[i] 要大于等于0,从坐标要大于等于0 也可以看出!

综上,状态转移方程就是求这两者的最大值。

3、初始化

根据经验,我们必须多一层空间,防止下标越界。

根据转移方程,我们我们发现对于列是不会产生越界的,因为我们对于列下标都会有j-v[i] >= 0判断!

所以我们只需要考虑行初始化,下面的背包问题也是如此,列的下标越界问题不用考虑!只需要考虑行的初始化。

在第0行,表示在前0个物品中,总体积为j所表示的总价值,不存在,所以可以直接初始化为0。

4、填表顺序

根据状态转移方程可知,由上到下,由左到右。

5、返回值

由题意中的求这个背包至多能装多大价值的物品,所以我们返回dp[n][V].

n表示一共有n个物品,V表示背包所能容纳的最大体积。


我们继续解决第二问,背包必须装满的情况下。

1、状态表示

dp[i][j] 此时状态表示要与第一问进行区分:

dp[i][j] 表示从前i个物品中挑选,总体积正好等于j,所有选法中能挑选出的最大价值

2、状态转移方程

大部分内容与第一问相同,但是我们要考虑在前i个物品中挑选,可能体积要求不满足,也就是条件不存在的情况!

因此我们需要将不成立的部分要特殊处理!!!目的都是为了不要使用这些不存在的值

第一种,将不存在的情况赋值成-1.

第二种,将这些值赋值成0x3f3f3f3f,表示最大值,或者负的,表示最小值。

3、初始化
还是跟之前一样,第一列不需要初始化。

第一行的第一个数存在,赋值为0。但是后面的值就不存在,在前0个物品中,挑选出体积正好为1、2、3……这些情况都不存在,所以赋值为-1

4、填表顺序

从上往下

5、返回值

dp[n][V]


空间优化:

1、利用滚动数组在空间上的优化

我们可以直接用一维dp数组去代替二维数组

2、直接在原始的代码上稍加修改即可

直接将横坐标删除,然后遍历顺序修改成从右往左

为何遍历顺序改成从右往左?因为我们在初始化dp表时,用到了左上角的值,而一维滚动初始化时从左往右会导致新一轮的值会被覆盖、修改掉。因此需要从右往左进行初始化dp表!

空间优化后的代码

#include <iostream>
#include<bits/stdc++.h>
using namespace std;int dp[1010];
int v[1010];
int w[1010];int main()
{int n = 0, V = 0;cin >> n >> V;for(int i = 1; i <= n; i++){cin >> v[i] >> w[i];}//解决第一问for(int i = 1; i <= n; i++){for(int j = V; j >= v[i]; j--){dp[j] = max(dp[j], w[i]+dp[j-v[i]]);}}cout << dp[V] << endl;//解决第二问memset(dp,0,sizeof(dp));for(int i = 1; i <= V; i++) dp[i] = -1;for(int i = 1; i <= n; i++){for(int j = V; j >= 1; j--){if(j >= v[i] && dp[j-v[i]] != -1){dp[j] = max(dp[j], w[i]+dp[j-v[i]]);}}}if(dp[V] == -1)  cout << 0;else    cout << dp[V];return 0;  
}

二、完全背包

【模板】完全背包_牛客题霸_牛客网 (nowcoder.com)

我们先解决第一问,背包没有装满的情况下。

1、状态表示:

跟01背包状态表示一致。

dp[i][j] 表示从前i个物品中挑选,总体积不超过j,所有选法中能挑选出的最大价值。

2、状态转移方程

01背包和完全背包的本质区别就是能选择数量不一样,01背包数量只有1个,而完全背包可选择物品数量有无限多个

因此状态转移方程根据可选择物品数量分为很多种。

那有无限多种,如何将其转化为只有一种状态或者两种状态呢?

根据数学知识将纵坐标j 进行代换变成 j-v[i],进行如下证明即可得:

最终的方程就是:

dp[j] = max(dp[j], dp[j-v[i]] + w[i]);

这里可以直接记忆最后的答案,证明过程了解。

简记就是将第一个状态转移表达式中的横坐标加1即可!

3、初始化

只需要初始化第一行初始化为0即可

4、填表顺序

根据状态转移方程,从上往下填写每一行,每一行从左往右

5、返回值

dp[n][V]


我们继续解决第二问,背包必须装满的情况下。

1、状态表示

dp[i][j] 此时状态表示要与第一问进行区分:

dp[i][j] 表示从前i个物品中挑选,总体积正好等于j,所有选法中能挑选出的最大价值

2、状态转移方程

与第一问的区别就是:需要用-1额外表示不存在的状态。

3、初始化

将不存在的情况赋值为-1。

第一行除了第一个位置其余都不存在。

4、填表顺序

同第一问

5、返回值

同第一问

空间优化:

同样也是利用滚动数组进行空间优化。

注意这里与01背包的区别就是从左往右遍历。

区分:

01背包从右往左遍历的原因是他运用到了上一行的值,因为是横坐标是 i-1

而完全背包的状态转移方程的横坐标是

这两者状态转移方程的区别也决定了他们在初始化方向的问题!!!

虚线表示01背包的方向,实现表示完全背包的方向。

最终优化后的代码:

#include <iostream>
#include<bits/stdc++.h>
using namespace std;int v[1010];
int w[1010];int dp[1010];int main()
{  int n = 0, V = 0;cin >> n >> V;for(int i = 1; i <= n; i++) cin >> v[i] >> w[i];//vector<vector<int>> dp(n+1, vector<int>(V+1));//解决第一问for(int i = 1; i <= n ; i++){//从左往右遍历for(int j = 1; j <= V ; j++){if(j-v[i] >= 0){dp[j] = max(dp[j], dp[j-v[i]] + w[i]);}}}cout << dp[V] << endl;//解决第二问memset(dp,0,sizeof(dp));//先初始化为-1for(int i = 1; i <= V; i++) dp[i] = -1;for(int i = 1; i <= n ; i++){for(int j = 1; j <= V ; j++){if(j-v[i] >= 0 && dp[j-v[i]] != -1){dp[j] = max(dp[j], dp[j-v[i]] + w[i]);}}}if(dp[V] == -1) cout << 0;else cout << dp[V];return 0;
}

这篇关于动规解决01背包/完全背包精讲的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/992218

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

SpringBoot监控API请求耗时的6中解决解决方案

《SpringBoot监控API请求耗时的6中解决解决方案》本文介绍SpringBoot中记录API请求耗时的6种方案,包括手动埋点、AOP切面、拦截器、Filter、事件监听、Micrometer+... 目录1. 简介2.实战案例2.1 手动记录2.2 自定义AOP记录2.3 拦截器技术2.4 使用Fi

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

java内存泄漏排查过程及解决

《java内存泄漏排查过程及解决》公司某服务内存持续增长,疑似内存泄漏,未触发OOM,排查方法包括检查JVM配置、分析GC执行状态、导出堆内存快照并用IDEAProfiler工具定位大对象及代码... 目录内存泄漏内存问题排查1.查看JVM内存配置2.分析gc是否正常执行3.导出 dump 各种工具分析4.

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

SpringBoot整合Dubbo+ZK注册失败的坑及解决

《SpringBoot整合Dubbo+ZK注册失败的坑及解决》使用Dubbo框架时,需在公共pom添加依赖,启动类加@EnableDubbo,实现类用@DubboService替代@Service,配... 目录1.先看下公共的pom(maven创建的pom工程)2.启动类上加@EnableDubbo3.实

nginx中端口无权限的问题解决

《nginx中端口无权限的问题解决》当Nginx日志报错bind()to80failed(13:Permissiondenied)时,这通常是由于权限不足导致Nginx无法绑定到80端口,下面就来... 目录一、问题原因分析二、解决方案1. 以 root 权限运行 Nginx(不推荐)2. 为 Nginx