动规解决01背包/完全背包精讲

2024-05-15 15:36

本文主要是介绍动规解决01背包/完全背包精讲,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

还不会用动态规划解决01背包/完全背包?看这一篇文章就够了!

首先我们要明白什么是01背包和完全背包。

背包问题总体问法就是:

你有一个背包,最多能容纳的体积是V。

现在有n个物品,第i个物品的体积为vi​ ,价值为wi​。

现在有n种物品,每种物品有任意多个,第i种物品的体积为vi​ ,价值为wi​。

(1)求这个背包至多能装多大价值的物品?

(2)若背包恰好装满,求至多能装多大价值的物品?

根据物品个数是唯一还是无限多个,如果只能装一个,就是01背包问题;如果同一个物品能装无限多个,就是完全背包问题。

问法的区别:

同样也是分为两类,第一种就是必须将背包恰好装满,第二种问法是背包不必装满。

在弄清楚什么是01背包和完全背包后,我们来正式学习如何解决这类问题吧!


我们首先来详细讲解01背包和完全背包的母题(模板),然后会有相应的例题,同样也有详解给到大家!

一、01背包

【模板】01背包_牛客题霸_牛客网 (nowcoder.com)

我们先解决第一问,背包没有必须装满的情况下。

用动态规划解决问题有下面的标准步骤:

1、状态表示:

dp[i][j] 表示从前i个物品中挑选,总体积不超过j,所有选法中能挑选出的最大价值。

有同学会问,状态表示为什么是这样的呢?因为这样我们会包含物品个数和体积,也没必要多想,可以直接记住!

2、状态转移方程

根据最后一步的状况,分情况讨论。

这里的dp[i][j]分为两种情况:

  1. 不选i物品:dp[i-1][j]:此时状态表示就是第i-1个物品状态,直接照抄即可
  2. 选i物品:dp[i-1][j-v[i]]+w[i]:因为我们已经挑选了第i个物品,因此第i个物品的价值一定是先加上的。在我们选了第i个物品的情况下,我们就需要找在前i-1个物品中体积等于j-v[i]的状态。当然这里的前提是必须 j-v[i] 要大于等于0,从坐标要大于等于0 也可以看出!

综上,状态转移方程就是求这两者的最大值。

3、初始化

根据经验,我们必须多一层空间,防止下标越界。

根据转移方程,我们我们发现对于列是不会产生越界的,因为我们对于列下标都会有j-v[i] >= 0判断!

所以我们只需要考虑行初始化,下面的背包问题也是如此,列的下标越界问题不用考虑!只需要考虑行的初始化。

在第0行,表示在前0个物品中,总体积为j所表示的总价值,不存在,所以可以直接初始化为0。

4、填表顺序

根据状态转移方程可知,由上到下,由左到右。

5、返回值

由题意中的求这个背包至多能装多大价值的物品,所以我们返回dp[n][V].

n表示一共有n个物品,V表示背包所能容纳的最大体积。


我们继续解决第二问,背包必须装满的情况下。

1、状态表示

dp[i][j] 此时状态表示要与第一问进行区分:

dp[i][j] 表示从前i个物品中挑选,总体积正好等于j,所有选法中能挑选出的最大价值

2、状态转移方程

大部分内容与第一问相同,但是我们要考虑在前i个物品中挑选,可能体积要求不满足,也就是条件不存在的情况!

因此我们需要将不成立的部分要特殊处理!!!目的都是为了不要使用这些不存在的值

第一种,将不存在的情况赋值成-1.

第二种,将这些值赋值成0x3f3f3f3f,表示最大值,或者负的,表示最小值。

3、初始化
还是跟之前一样,第一列不需要初始化。

第一行的第一个数存在,赋值为0。但是后面的值就不存在,在前0个物品中,挑选出体积正好为1、2、3……这些情况都不存在,所以赋值为-1

4、填表顺序

从上往下

5、返回值

dp[n][V]


空间优化:

1、利用滚动数组在空间上的优化

我们可以直接用一维dp数组去代替二维数组

2、直接在原始的代码上稍加修改即可

直接将横坐标删除,然后遍历顺序修改成从右往左

为何遍历顺序改成从右往左?因为我们在初始化dp表时,用到了左上角的值,而一维滚动初始化时从左往右会导致新一轮的值会被覆盖、修改掉。因此需要从右往左进行初始化dp表!

空间优化后的代码

#include <iostream>
#include<bits/stdc++.h>
using namespace std;int dp[1010];
int v[1010];
int w[1010];int main()
{int n = 0, V = 0;cin >> n >> V;for(int i = 1; i <= n; i++){cin >> v[i] >> w[i];}//解决第一问for(int i = 1; i <= n; i++){for(int j = V; j >= v[i]; j--){dp[j] = max(dp[j], w[i]+dp[j-v[i]]);}}cout << dp[V] << endl;//解决第二问memset(dp,0,sizeof(dp));for(int i = 1; i <= V; i++) dp[i] = -1;for(int i = 1; i <= n; i++){for(int j = V; j >= 1; j--){if(j >= v[i] && dp[j-v[i]] != -1){dp[j] = max(dp[j], w[i]+dp[j-v[i]]);}}}if(dp[V] == -1)  cout << 0;else    cout << dp[V];return 0;  
}

二、完全背包

【模板】完全背包_牛客题霸_牛客网 (nowcoder.com)

我们先解决第一问,背包没有装满的情况下。

1、状态表示:

跟01背包状态表示一致。

dp[i][j] 表示从前i个物品中挑选,总体积不超过j,所有选法中能挑选出的最大价值。

2、状态转移方程

01背包和完全背包的本质区别就是能选择数量不一样,01背包数量只有1个,而完全背包可选择物品数量有无限多个

因此状态转移方程根据可选择物品数量分为很多种。

那有无限多种,如何将其转化为只有一种状态或者两种状态呢?

根据数学知识将纵坐标j 进行代换变成 j-v[i],进行如下证明即可得:

最终的方程就是:

dp[j] = max(dp[j], dp[j-v[i]] + w[i]);

这里可以直接记忆最后的答案,证明过程了解。

简记就是将第一个状态转移表达式中的横坐标加1即可!

3、初始化

只需要初始化第一行初始化为0即可

4、填表顺序

根据状态转移方程,从上往下填写每一行,每一行从左往右

5、返回值

dp[n][V]


我们继续解决第二问,背包必须装满的情况下。

1、状态表示

dp[i][j] 此时状态表示要与第一问进行区分:

dp[i][j] 表示从前i个物品中挑选,总体积正好等于j,所有选法中能挑选出的最大价值

2、状态转移方程

与第一问的区别就是:需要用-1额外表示不存在的状态。

3、初始化

将不存在的情况赋值为-1。

第一行除了第一个位置其余都不存在。

4、填表顺序

同第一问

5、返回值

同第一问

空间优化:

同样也是利用滚动数组进行空间优化。

注意这里与01背包的区别就是从左往右遍历。

区分:

01背包从右往左遍历的原因是他运用到了上一行的值,因为是横坐标是 i-1

而完全背包的状态转移方程的横坐标是

这两者状态转移方程的区别也决定了他们在初始化方向的问题!!!

虚线表示01背包的方向,实现表示完全背包的方向。

最终优化后的代码:

#include <iostream>
#include<bits/stdc++.h>
using namespace std;int v[1010];
int w[1010];int dp[1010];int main()
{  int n = 0, V = 0;cin >> n >> V;for(int i = 1; i <= n; i++) cin >> v[i] >> w[i];//vector<vector<int>> dp(n+1, vector<int>(V+1));//解决第一问for(int i = 1; i <= n ; i++){//从左往右遍历for(int j = 1; j <= V ; j++){if(j-v[i] >= 0){dp[j] = max(dp[j], dp[j-v[i]] + w[i]);}}}cout << dp[V] << endl;//解决第二问memset(dp,0,sizeof(dp));//先初始化为-1for(int i = 1; i <= V; i++) dp[i] = -1;for(int i = 1; i <= n ; i++){for(int j = 1; j <= V ; j++){if(j-v[i] >= 0 && dp[j-v[i]] != -1){dp[j] = max(dp[j], dp[j-v[i]] + w[i]);}}}if(dp[V] == -1) cout << 0;else cout << dp[V];return 0;
}

这篇关于动规解决01背包/完全背包精讲的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/992218

相关文章

qt5cored.dll报错怎么解决? 电脑qt5cored.dll文件丢失修复技巧

《qt5cored.dll报错怎么解决?电脑qt5cored.dll文件丢失修复技巧》在进行软件安装或运行程序时,有时会遇到由于找不到qt5core.dll,无法继续执行代码,这个问题可能是由于该文... 遇到qt5cored.dll文件错误时,可能会导致基于 Qt 开发的应用程序无法正常运行或启动。这种错

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

RedisTemplate默认序列化方式显示中文乱码的解决

《RedisTemplate默认序列化方式显示中文乱码的解决》本文主要介绍了SpringDataRedis默认使用JdkSerializationRedisSerializer导致数据乱码,文中通过示... 目录1. 问题原因2. 解决方案3. 配置类示例4. 配置说明5. 使用示例6. 验证存储结果7.

Swagger在java中的运用及常见问题解决

《Swagger在java中的运用及常见问题解决》Swagger插件是一款深受Java开发者喜爱的工具,它在前后端分离的开发模式下发挥着重要作用,:本文主要介绍Swagger在java中的运用及常... 目录前言1. Swagger 的主要功能1.1 交互式 API 文档1.2 客户端 SDK 生成1.3

java连接opcua的常见问题及解决方法

《java连接opcua的常见问题及解决方法》本文将使用EclipseMilo作为示例库,演示如何在Java中使用匿名、用户名密码以及证书加密三种方式连接到OPCUA服务器,若需要使用其他SDK,原理... 目录一、前言二、准备工作三、匿名方式连接3.1 匿名方式简介3.2 示例代码四、用户名密码方式连接4