【Leetcode每日一题】 动态规划 - 简单多状态 dp 问题 - 删除并获得点数(难度⭐⭐)(76)

本文主要是介绍【Leetcode每日一题】 动态规划 - 简单多状态 dp 问题 - 删除并获得点数(难度⭐⭐)(76),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 题目解析

题目链接:LCR 091. 粉刷房子

这个问题的理解其实相当简单,只需看一下示例,基本就能明白其含义了。

2.算法原理

1. 状态定义

在解决这类问题时,我们首先需要根据题目的具体要求来定义状态。针对房屋粉刷问题,我们可以定义一个二维数组dp来表示状态,其中dp[i][j]表示粉刷到第i个位置时,且最后一个位置粉刷成颜色jj可以是红、蓝、绿三种颜色)时的最小花费。

  • dp[i][0]:表示粉刷到第i个位置时,最后一个位置粉刷成红色的最小花费。
  • dp[i][1]:表示粉刷到第i个位置时,最后一个位置粉刷成蓝色的最小花费。
  • dp[i][2]:表示粉刷到第i个位置时,最后一个位置粉刷成绿色的最小花费。
2. 状态转移方程

接下来,我们需要根据题目要求来推导状态转移方程。由于题目中规定了相邻位置不能粉刷成相同的颜色,因此在计算dp[i][j]时,我们需要考虑i-1位置的颜色,并确保与j不同。

  • 对于dp[i][0](即第i个位置粉刷成红色):
    • 由于不能与前一个位置颜色相同,所以前一个位置可以是蓝色或绿色。因此,状态转移方程为:dp[i][0] = min(dp[i-1][1], dp[i-1][2]) + costs[i-1][0],其中costs[i-1][0]表示第i-1个位置粉刷成红色的花费。
  • 同理,对于dp[i][1]dp[i][2],我们也可以得到相应的状态转移方程:
    • dp[i][1] = min(dp[i-1][0], dp[i-1][2]) + costs[i-1][1]
    • dp[i][2] = min(dp[i-1][0], dp[i-1][1]) + costs[i-1][2]
3. 初始化

在填表之前,我们需要对状态数组进行初始化。由于题目没有明确指出第一个位置之前的颜色,我们可以添加一个辅助节点,并将所有颜色在该节点的花费初始化为0(或者一个不会影响后续计算的值)。这样做可以确保我们的状态转移方程在i=1时也能正确工作。

4. 填表顺序

根据状态转移方程,我们可以发现每个状态dp[i][j]都依赖于前一个位置的状态dp[i-1][k](其中k不等于j)。因此,我们需要按照从左到右的顺序来填表,以确保在计算每个状态时,其依赖的状态已经被计算出来。

5. 返回值

最后,我们需要返回粉刷完整个房屋(即最后一个位置)时的最小花费。由于我们定义了三种颜色的状态,因此需要比较这三种颜色在最后一个位置的最小花费,并返回其中的最小值。即:min(dp[n][0], min(dp[n][1], dp[n][2])),其中n是房屋的总位置数。

3.代码编写

class Solution {
public:int minCost(vector<vector<int>>& costs) {int n = costs.size();vector<vector<int>> dp(n + 1, vector<int>(3));for (int i = 1; i <= n; i++) {dp[i][0] = min(dp[i - 1][1], dp[i - 1][2]) + costs[i - 1][0];dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + costs[i - 1][1];dp[i][2] = min(dp[i - 1][1], dp[i - 1][0]) + costs[i - 1][2];}return min(dp[n][0], min(dp[n][1], dp[n][2]));}
};

The Last

嗯,就是这样啦,文章到这里就结束啦,真心感谢你花时间来读。

觉得有点收获的话,不妨给我点个吧!

如果发现文章有啥漏洞或错误的地方,欢迎私信我或者在评论里提醒一声~

这篇关于【Leetcode每日一题】 动态规划 - 简单多状态 dp 问题 - 删除并获得点数(难度⭐⭐)(76)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/992126

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Java中使用 @Builder 注解的简单示例

《Java中使用@Builder注解的简单示例》@Builder简化构建但存在复杂性,需配合其他注解,导致可变性、抽象类型处理难题,链式编程非最佳实践,适合长期对象,避免与@Data混用,改用@G... 目录一、案例二、不足之处大多数同学使用 @Builder 无非就是为了链式编程,然而 @Builder

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

MySQL逻辑删除与唯一索引冲突解决方案

《MySQL逻辑删除与唯一索引冲突解决方案》本文探讨MySQL逻辑删除与唯一索引冲突问题,提出四种解决方案:复合索引+时间戳、修改唯一字段、历史表、业务层校验,推荐方案1和方案3,适用于不同场景,感兴... 目录问题背景问题复现解决方案解决方案1.复合唯一索引 + 时间戳删除字段解决方案2:删除后修改唯一字