【Leetcode每日一题】 动态规划 - 简单多状态 dp 问题 - 删除并获得点数(难度⭐⭐)(76)

本文主要是介绍【Leetcode每日一题】 动态规划 - 简单多状态 dp 问题 - 删除并获得点数(难度⭐⭐)(76),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 题目解析

题目链接:LCR 091. 粉刷房子

这个问题的理解其实相当简单,只需看一下示例,基本就能明白其含义了。

2.算法原理

1. 状态定义

在解决这类问题时,我们首先需要根据题目的具体要求来定义状态。针对房屋粉刷问题,我们可以定义一个二维数组dp来表示状态,其中dp[i][j]表示粉刷到第i个位置时,且最后一个位置粉刷成颜色jj可以是红、蓝、绿三种颜色)时的最小花费。

  • dp[i][0]:表示粉刷到第i个位置时,最后一个位置粉刷成红色的最小花费。
  • dp[i][1]:表示粉刷到第i个位置时,最后一个位置粉刷成蓝色的最小花费。
  • dp[i][2]:表示粉刷到第i个位置时,最后一个位置粉刷成绿色的最小花费。
2. 状态转移方程

接下来,我们需要根据题目要求来推导状态转移方程。由于题目中规定了相邻位置不能粉刷成相同的颜色,因此在计算dp[i][j]时,我们需要考虑i-1位置的颜色,并确保与j不同。

  • 对于dp[i][0](即第i个位置粉刷成红色):
    • 由于不能与前一个位置颜色相同,所以前一个位置可以是蓝色或绿色。因此,状态转移方程为:dp[i][0] = min(dp[i-1][1], dp[i-1][2]) + costs[i-1][0],其中costs[i-1][0]表示第i-1个位置粉刷成红色的花费。
  • 同理,对于dp[i][1]dp[i][2],我们也可以得到相应的状态转移方程:
    • dp[i][1] = min(dp[i-1][0], dp[i-1][2]) + costs[i-1][1]
    • dp[i][2] = min(dp[i-1][0], dp[i-1][1]) + costs[i-1][2]
3. 初始化

在填表之前,我们需要对状态数组进行初始化。由于题目没有明确指出第一个位置之前的颜色,我们可以添加一个辅助节点,并将所有颜色在该节点的花费初始化为0(或者一个不会影响后续计算的值)。这样做可以确保我们的状态转移方程在i=1时也能正确工作。

4. 填表顺序

根据状态转移方程,我们可以发现每个状态dp[i][j]都依赖于前一个位置的状态dp[i-1][k](其中k不等于j)。因此,我们需要按照从左到右的顺序来填表,以确保在计算每个状态时,其依赖的状态已经被计算出来。

5. 返回值

最后,我们需要返回粉刷完整个房屋(即最后一个位置)时的最小花费。由于我们定义了三种颜色的状态,因此需要比较这三种颜色在最后一个位置的最小花费,并返回其中的最小值。即:min(dp[n][0], min(dp[n][1], dp[n][2])),其中n是房屋的总位置数。

3.代码编写

class Solution {
public:int minCost(vector<vector<int>>& costs) {int n = costs.size();vector<vector<int>> dp(n + 1, vector<int>(3));for (int i = 1; i <= n; i++) {dp[i][0] = min(dp[i - 1][1], dp[i - 1][2]) + costs[i - 1][0];dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + costs[i - 1][1];dp[i][2] = min(dp[i - 1][1], dp[i - 1][0]) + costs[i - 1][2];}return min(dp[n][0], min(dp[n][1], dp[n][2]));}
};

The Last

嗯,就是这样啦,文章到这里就结束啦,真心感谢你花时间来读。

觉得有点收获的话,不妨给我点个吧!

如果发现文章有啥漏洞或错误的地方,欢迎私信我或者在评论里提醒一声~

这篇关于【Leetcode每日一题】 动态规划 - 简单多状态 dp 问题 - 删除并获得点数(难度⭐⭐)(76)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/992126

相关文章

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Spring Boot中JSON数值溢出问题从报错到优雅解决办法

《SpringBoot中JSON数值溢出问题从报错到优雅解决办法》:本文主要介绍SpringBoot中JSON数值溢出问题从报错到优雅的解决办法,通过修改字段类型为Long、添加全局异常处理和... 目录一、问题背景:为什么我的接口突然报错了?二、为什么会发生这个错误?1. Java 数据类型的“容量”限制

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

关于MongoDB图片URL存储异常问题以及解决

《关于MongoDB图片URL存储异常问题以及解决》:本文主要介绍关于MongoDB图片URL存储异常问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录MongoDB图片URL存储异常问题项目场景问题描述原因分析解决方案预防措施js总结MongoDB图

SpringBoot项目中报错The field screenShot exceeds its maximum permitted size of 1048576 bytes.的问题及解决

《SpringBoot项目中报错ThefieldscreenShotexceedsitsmaximumpermittedsizeof1048576bytes.的问题及解决》这篇文章... 目录项目场景问题描述原因分析解决方案总结项目场景javascript提示:项目相关背景:项目场景:基于Spring

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基