机器学习案例:加州房产价格(四)

2024-05-15 09:52

本文主要是介绍机器学习案例:加州房产价格(四),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考链接:https://hands1ml.apachecn.org/2/#_12

数据探索和可视化、发现规律

通过之前的工作,你只是快速查看了数据,对要处理的数据有了整体了解,现在的目标是更深的探索数据。

首先,保证你将测试集放在了一旁,只是研究训练集。
另外,如果训练集非常大,你可能需要再采样一个探索集,保证操作方便快速。
在这个案例中,因为数据集很小,所以可以在全集上直接工作。创建一个副本,以免损伤训练集

housing = strat_train_set.copy()

地理数据可视化

因为存在地理信息(纬度和经度),创建一个所有街区的散点图来数据可视化是一个不错的主意

housing.plot(kind="scatter", x="longitude", y="latitude")

在这里插入图片描述
在这里插入图片描述

这张图看起来很像加州,但是看不出什么特别的规律。
可以将alpha设为 0.1,可以更容易看出数据点的密度 ,参数alpha设置了散点的透明度,通常用于显示密集程度。

housing.plot(kind="scatter", x="longitude", y="latitude", alpha=0.1)

在这里插入图片描述
现在看起来好多了:可以非常清楚地看到高密度区域,湾区、洛杉矶和圣迭戈,以及中央谷,特别是从萨克拉门托和弗雷斯诺。

通常来讲,人类的大脑非常善于发现图片中的规律,但是需要调整可视化参数使规律显现出来。

现在将注意力转到房价上。
每个圈的半径表示街区的人口(选项s),颜色代表价格(选项c)。我们用预先定义的名为jet的颜色图(选项cmap),它的范围是从蓝色(低价)到红色(高价):

housing.plot(kind="scatter", x="longitude", y="latitude", alpha=0.4,s=housing["population"]/100, label="population",c="median_house_value", cmap=plt.get_cmap("jet"), colorbar=True,
)
plt.legend()

在这里插入图片描述
这张图说明房价和位置(比如,靠海)和人口密度联系密切,这点你可能早就知道。可以使用聚类算法来检测主要的聚集,用一个新的特征值测量聚集中心的距离。尽管北加州海岸区域的房价不是非常高,但离大海距离属性也可能很有用,所以这不是用一个简单的规则就可以定义的问题。

查找关联

因为数据集并不是非常大,你可以很容易地使用corr()方法计算出每对属性间的标准相关系数
(standard correlation coefficient,也称作皮尔逊相关系数)
在这里插入图片描述

corr_matrix = housing.corr()

在这里插入图片描述
相关系数的范围是 -1 到 1。当接近 1 时,意味强正相关;例如,当收入中位数增加时,房价中位数也会增加。当相关系数接近 -1 时,意味强负相关;你可以看到,纬度和房价中位数有轻微的负相关性(即,越往北,房价越可能降低)。最后,相关系数接近 0,意味没有线性相关性。

另一种检测属性间相关系数的方法是使用 Pandas 的scatter_matrix函数,它能画出每个数值属性对每个其它数值属性的图。因为现在共有 11 个数值属性,你可以得到11 ** 2 = 121张图,在一页上画不下,所以只关注几个和房价中位数最有可能相关的属性

from pandas.plotting import scatter_matrixattributes = ["median_house_value", "median_income", "total_rooms","housing_median_age"]
scatter_matrix(housing[attributes], figsize=(12, 8))

在这里插入图片描述
最有希望用来预测房价中位数的属性是收入中位数,因此将这张图放大

housing.plot(kind="scatter", x="median_income",y="median_house_value",alpha=0.1)

在这里插入图片描述
这张图说明了几点。首先,相关性非常高;可以清晰地看到向上的趋势,并且数据点不是非常分散。第二,我们之前看到的最高价,清晰地呈现为一条位于 500000 美元的水平线。这张图也呈现了一些不是那么明显的直线:一条位于 450000 美元的直线,一条位于 350000 美元的直线,一条在 280000 美元的线,和一些更靠下的线。你可能希望去除对应的街区,以防止算法重复这些巧合。

这篇关于机器学习案例:加州房产价格(四)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/991508

相关文章

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Spring Boot 整合 SSE(Server-Sent Events)实战案例(全网最全)

《SpringBoot整合SSE(Server-SentEvents)实战案例(全网最全)》本文通过实战案例讲解SpringBoot整合SSE技术,涵盖实现原理、代码配置、异常处理及前端交互,... 目录Spring Boot 整合 SSE(Server-Sent Events)1、简述SSE与其他技术的对

MySQL 临时表与复制表操作全流程案例

《MySQL临时表与复制表操作全流程案例》本文介绍MySQL临时表与复制表的区别与使用,涵盖生命周期、存储机制、操作限制、创建方法及常见问题,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随小... 目录一、mysql 临时表(一)核心特性拓展(二)操作全流程案例1. 复杂查询中的临时表应用2. 临时

MySQL 数据库表与查询操作实战案例

《MySQL数据库表与查询操作实战案例》本文将通过实际案例,详细介绍MySQL中数据库表的设计、数据插入以及常用的查询操作,帮助初学者快速上手,感兴趣的朋友跟随小编一起看看吧... 目录mysql 数据库表操作与查询实战案例项目一:产品相关数据库设计与创建一、数据库及表结构设计二、数据库与表的创建项目二:员

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

C#中的Drawing 类案例详解

《C#中的Drawing类案例详解》文章解析WPF与WinForms的Drawing类差异,涵盖命名空间、继承链、常用类及应用场景,通过案例展示如何创建带阴影圆角矩形按钮,强调WPF的轻量、可动画特... 目录一、Drawing 是什么?二、典型用法三、案例:画一个“带阴影的圆角矩形按钮”四、WinForm