使用 Python 和机器学习预测股票涨跌幅

2024-05-15 07:04

本文主要是介绍使用 Python 和机器学习预测股票涨跌幅,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用 Tushare API 获取深圳股市历史数据

引言

这篇文章将会演示如何使用 Tushare Pro API 获取深圳股市的历史交易数据,并将数据保存到CSV文件中。Tushare 是一款提供实时和历史金融市场的数据服务,支持多种语言,具有丰富的数据源和强大的功能。

安装 Tushare

在开始之前,你需要先安装 Tushare 库。可以通过 pip 安装:

pip install tushare

初始化 Tushare API

使用 Tushare Pro API 需要一个 token 。可以在 Tushare 官方网站注册并获取 token。一旦你获得了 token,可以通过以下方式初始化 Tushare API:

import tushare as tsts.set_token('your_token')

获取历史数据

一旦你已经初始化了 Tushare API,就可以开始请求数据了。在此示例中,我们将获取深交所的“000004”股票的历史数据。我们可以通过以下代码实现:​​​​​​​

pro = ts.pro_api('your_token')df = pro.daily(ts_code='000004.SZ', start_date='20200701', end_date='20231108')

此段代码将从2020年7月1日到2023年11月10日获取“000004”股票的日线数据。

保存数据到CSV文件

最后,我们可以使用 pandas 的 to_csv 函数来将所获取的数据保存到CSV文件中:

df.to_csv("000004_2023.csv", index=False)

在保存时,我们不希望保留索引(index=False),因为 Tushare 提供的数据已经自带了一个 date 字段作为索引。所以如果保留索引的话,可能会造成混淆。总结一下,这篇教程介绍了如何使用 Tushare API 来获取深交所历史数据并将其保存到CSV文件中。Tushare 是一款功能强大的金融数据分析工具,可以帮助您更好地理解金融市场趋势。

使用 Python 和机器学习预测股票涨跌幅

引言

这篇文章将演示如何使用Python和机器学习库来构建一个简单的股票涨跌幅预测模型。我们将使用过去的股票涨跌幅数据来预测明天的股票涨跌幅走势。在开始之前,请确保你已安装所需的所有库,其中包括 Pandas、Numpy、Scikit-learn 和 XGBoost。

安装 Tushare

在开始之前,你需要先安装 Tushare 库。可以通过 pip 安装:​​​​​​​

pip install numpypip install pandaspip install xgboostpip install scikit-learn

数据导入

首先,我们需要读取股票涨跌幅数据,并将其转换成 Pandas DataFrame。使用 Pandas 的 read_csv() 函数即可完成这项工作:

import pandas as pdimport numpy as npfrom sklearn.model_selection import train_test_splitfrom xgboost import XGBClassifierfrom sklearn.metrics import accuracy_scoredata = pd.read_csv("000004_2023.csv")

特征和标签的选择

接下来,我们需要确定输入特性和输出特性。在这个例子中,我们将选取开盘价、最高价、最低价、昨天的收盘价、今天的价格变动、成交量和成交额作为输入特征。此外,我们将根据今天的涨跌幅与昨天涨跌幅的差值是否为正,将明天的涨跌幅变动标记为涨(1)或跌(0)作为输出特性。通过以下代码实现:​​​​​​​

features = ["open", "high", "low", "pre_close", "change", "vol", "amount"]               data["pct_chg"] = data["close"].pct_change()               data["pct_chg"] = np.where(data["pct_chg"] > 0, 1, 0)

划分训练集和测试集

接下来,我们需要将数据集分割为两个部分:训练集和测试集。通常,我们将 80% 的数据用于训练模型,剩下20%的数据用于评估模型。我们可以使用 Scikit-learn 的 train_test_split() 函数来实现这一目的:​​​​​​​

X = data[features]               y = data["pct_chg"]                              X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=48)

建立和训练模型

现在我们可以使用 XGBoost 模型来构建我们的预测器。首先,我们创建一个 XGBClassifier 类的实例,并使用 fit() 方法对其进行训练:​​​​​​​

model = XGBClassifier()               model.fit(X_train, y_train)

测试模型

接下来,我们可以使用我们的模型对测试集进行预测:

y_pred = model.predict(X_test)

评估模型

现在我们可以计算预测结果的准确性:

​​​​​​​

accuracy = accuracy_score(y_test, y_pred)               print(f"模型准确率: {accuracy}")

预测未来价格

接下来我们使用模型预测未来两天的涨跌幅。首先,我们需要获得未来两天的时间戳:

​​​​​​​

last_date = pd.to_datetime(data.index[-1])               future_dates = pd.date_range(last_date + pd.DateOffset(days=1), periods=2)

然后,我们将昨天的涨跌幅信息填充到未来两天的时间戳下:

future_features = pd.DataFrame(index=future_dates)               for column in features:                   future_features[column] = [data[column].iloc[-1]] * 2

最后,我们用模型对未来的两天的涨跌幅进行预测:

future_predictions = model.predict(future_features)               print(f"未来两天的预测值: {future_predictions}")

综上所述,我们已经完成了使用 Python 和机器学习技术构建一个简单股票涨跌幅预测模型的过程。需要注意的是,虽然该模型能够在一定程度上预测未来的涨跌幅走势,但是还需要考虑其他因素,如市场环境和经济政策等。    

请注意:

以上代码仅使用简单的机器学习模型尝试预测股票涨跌幅变动,而在实际中,股票涨跌幅受到许多复杂因素的影响,比如政治因素、宏观经济情况、公司经营状况等。在实际应用中应慎重使用,并配合其他技术分析手段进行辅助判断。另外,股市有风险,投资需谨慎。

这篇关于使用 Python 和机器学习预测股票涨跌幅的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/991133

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Java使用Swing生成一个最大公约数计算器

《Java使用Swing生成一个最大公约数计算器》这篇文章主要为大家详细介绍了Java使用Swing生成一个最大公约数计算器的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下... 目录第一步:利用欧几里得算法计算最大公约数欧几里得算法的证明情形 1:b=0情形 2:b>0完成相关代码第二步:加

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV