Python基本统计分析

2024-05-15 04:28
文章标签 python 基本 统计分析

本文主要是介绍Python基本统计分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

常见的统计分析方法

 

import numpy as np

import scipy.stats as spss

import pandas as pd

 

鸢尾花数据集

 

https://github.com/mwaskom/seaborn-data

 

df = pd.read_csv("iris.csv",index_col="species")

v1 = df.loc["versicolor",:].petal_length.values

v2 = df.loc["virginica",:].petal_length.values

 

1.组间差异的参数检验

数据是否服从正态分布

符合正态分布(p>0.05)

 

# Shapiro-Wilk test

stat, p_value = spss.shapiro(v1)

stat, p_value = spss.shapiro(v2)

 

方差齐性检验

方差齐,即v1和v2的方差没有显著性差异,即p>0.05

 

# 非参数检验,对于数据的分布没有要求

stat, p_value = spss.levene(v1,v2)

# 要求数据服从正态分布

stat, p_value = spss.bartlett(v1,v2)

 

两独立样本的 t 检验

stat, p_value = spss.ttest_ind(v1,v2)

 

非独立样本的 t 检验

配对 Paired Student’s t-test(本例中v1,v2并不是配对样本,这里仅用于演示)

 

stat, p_value = spss.ttest_rel(v1,v2)

one-way ANOVA

检查是否符合正态分布

df.petal_length.groupby(df.index).apply(spss.shapiro)

# species

# setosa (0.971718966960907, 0.27151283621788025)

# versicolor (0.9741330742835999, 0.3379890024662018)

# virginica (0.9673907160758972, 0.1808987259864807)

# Name: sepal_width, dtype: object

 

方差齐性检验

p_value > 0.05方差齐

 

v1 = df.loc["versicolor",:].sepal_width.values

v2 = df.loc["virginica",:].sepal_width.values

v3 = df.loc["setosa",:].sepal_width.values

stat, p_value = spss.bartlett(v1,v2,v3)

 

单因素方差分析

p_value < 0.05三个物种间的sepal_width有差异

 

stat, p_value = spss.f_oneway(v1, v2, v3)

也可以使用statsmodels中的函数,结果一致

 

from statsmodels.formula.api import ols

from statsmodels.stats.anova import anova_lm

df.loc[:,'species'] = df.index

aov_results = anova_lm(ols('sepal_width ~ species', data = df).fit())

aov_results

# df sum_sq mean_sq F PR(>F)

# species 2.0 11.344933 5.672467 49.16004 4.492017e-17

# Residual 147.0 16.962000 0.115388 NaN NaN

 

两两比较找出哪些组之间存在显著差异

3个物种两两之间的sepal_width都有显著性差异

 

from statsmodels.stats.multicomp import pairwise_tukeyhsd

tukey = pairwise_tukeyhsd(df.sepal_width, df.index)

print(tukey)

# Multiple Comparison of Means - Tukey HSD, FWER=0.05     

# ============================================================

# group1 group2 meandiff p-adj lower upper reject

# ------------------------------------------------------------

# setosa versicolor -0.658 0.0 -0.8189 -0.4971 True

# setosa virginica -0.454 0.0 -0.6149 -0.2931 True

# versicolor virginica 0.204 0.0088 0.0431 0.3649 True

# ------------------------------------------------------------

2.组间差异的非参数检验

两组样本

独立样本秩和检验

stat, p_value = spss.ranksums(v1, v2)

非独立样本秩和检验

stat, p_value = spss.wilcoxon(v1, v2)

多组样本

stat, p_value = spss.kruskal(v1, v2, v3)

3.连续型变量之间的相关性

Pearson’s Correlation Coefficient

v1,v2符合正态分布

 

r, p_value = spss.pearsonr(v1,v2)

spearman

v1,v2的分布没有特定的要求

 

r, p_value = spss.spearmanr(v1,v2)

kendalltau

v1,v2的分布没有特定的要求

 

r, p_value = spss.kendalltau(v1,v2)

多个变量之间的相关性

协方差矩阵

df.cov(numeric_only=True)

# sepal_length sepal_width petal_length petal_width

# sepal_length 0.685694 -0.042434 1.274315 0.516271

# sepal_width -0.042434 0.189979 -0.329656 -0.121639

# petal_length 1.274315 -0.329656 3.116278 1.295609

# petal_width 0.516271 -0.121639 1.295609 0.581006

 

相关系数矩阵

df.corr(numeric_only=True)

# sepal_length sepal_width petal_length petal_width

# sepal_length 1.000000 -0.117570 0.871754 0.817941

# sepal_width -0.117570 1.000000 -0.428440 -0.366126

# petal_length 0.871754 -0.428440 1.000000 0.962865

# petal_width 0.817941 -0.366126 0.962865 1.000000

3.分类变量

汽车耗油量数据集https://github.com/mwaskom/seaborn-data

 

mpg = pd.read_csv("mpg.csv")

频数

pd.value_counts(mpg.origin)

# usa 249

# japan 79

# europe 70

# Name: origin, dtype: int64

 

# 百分比

pd.value_counts(mpg.origin,normalize=True)

# usa 0.625628

# japan 0.198492

# europe 0.175879

# Name: origin, dtype: float64

 

列联表

两个以上的变量交叉分类的频数分布表

 

pd.crosstab(mpg.cylinders, mpg.origin)

# origin europe japan usa

# cylinders      

# 3 0 4 0

# 4 63 69 72

# 5 3 0 0

# 6 4 6 74

# 8 0 0 103

 

pd.crosstab(mpg.cylinders, mpg.origin, margins = True)

# origin europe japan usa All

# cylinders        

# 3 0 4 0 4

# 4 63 69 72 204

# 5 3 0 0 3

# 6 4 6 74 84

# 8 0 0 103 103

# All 70 79 249 398

 

每个单元格占总数的比例

pd.crosstab(mpg.cylinders, mpg.origin, normalize = True)

# origin europe japan usa

# cylinders      

# 3 0.000000 0.010050 0.000000

# 4 0.158291 0.173367 0.180905

# 5 0.007538 0.000000 0.000000

# 6 0.010050 0.015075 0.185930

# 8 0.000000 0.000000 0.258794

按行求比例

pd.crosstab(mpg.cylinders, mpg.origin, normalize = 0)

# origin europe japan usa

# cylinders      

# 3 0.000000 1.000000 0.000000

# 4 0.308824 0.338235 0.352941

# 5 1.000000 0.000000 0.000000

# 6 0.047619 0.071429 0.880952

# 8 0.000000 0.000000 1.000000

按列求比例

pd.crosstab(mpg.cylinders, mpg.origin, normalize = 1)

# origin europe japan usa

# cylinders      

# 3 0.000000 0.050633 0.000000

# 4 0.900000 0.873418 0.289157

# 5 0.042857 0.000000 0.000000

# 6 0.057143 0.075949 0.297189

# 8 0.000000 0.000000 0.413655

列联表独立性检验

χ2 独立性检验

在该函数中,参数““correction”用于设置是否进行连续性校正,默认为 True。对于大样本,且频数表中每个单元格的期望频数都比较大(一般要求大于 5),可以不进行连续性校正。

 

tb = pd.crosstab(mpg.cylinders, mpg.origin)

# χ2 值、 P 值、自由度、期望频数表

chi2, p_value, df, expected = spss.chi2_contingency(tb)

p_value

# 9.800693325588298e-35

expected

# array([[ 0.70351759, 0.79396985, 2.50251256],

# [ 35.87939698, 40.49246231, 127.6281407 ],

# [ 0.52763819, 0.59547739, 1.87688442],

# [ 14.77386935, 16.67336683, 52.55276382],

# [ 18.11557789, 20.44472362, 64.43969849]])

 

Fisher 精确概率检验

R语言中fisher.test的故事以及示例

 

Agresti (1990, p. 61f; 2002, p. 91) Fisher's Tea Drinker A British woman claimed to be able to distinguish whether milk or tea was added to the cup first. To test, she was given 8 cups of tea, in four of which milk was added first. The null hypothesis is that there is no association between the true order of pouring and the woman's guess, the alternative that there is a positive association (that the odds ratio is greater than 1).

 

如果观察总例数 n 小于 40,或者频数表里的某个期望频数很小(小于 1),则需要使用 Fisher 精确概率检验

 

spss.fisher_exact这个函数的输入只能是2X2的二维列联表,R中的fisher.test输入可以不是2X2列联表。

 

OR(0,+inf)如果 OR 值大于 1,则说明该因素更容易导致结果事件发生

 

alternative可以选two-sided(默认,OR可能>1,也可能<1), less(OR<1), greater(OR>1)

 

tea_tasting = pd.DataFrame({"Milk":[3,1],"Tea":[1,3]},index=["Milk", "Tea"])

tea_tasting

# Milk Tea

# Milk 3 1

# Tea 1 3

OR, p_value = spss.fisher_exact(tea_tasting,alternative="greater")

OR, p_value

# (9.0, 0.24285714285714283)

# p > 0.05, association could not be established

 

配对列联表的Mcnemar 检验

对每个对象分别用两种方法处理

 

exact:True(样本量小,使用二项分布);False(样本较大,使用 χ2 分布)

correction:在样本量较大,且不一致的结果总数小于 40 时,需要进行连续性校正

from statsmodels.sandbox.stats.runs import mcnemar

tb = np.array([[11, 12],[2, 33]])

stat, p_value = mcnemar(tb, exact = False, correction = True)

p_value

# 0.016156931261181305

 

Reference

https://www.heywhale.com/mw/notebook/61e3d3c7ddda3c0017b4658f

https://www.statsmodels.org/stable/generated/statsmodels.sandbox.stats.runs.mcnemar.html

这篇关于Python基本统计分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/990797

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型: