Lucene4.3进阶开发之纯阳无极(十九)

2024-05-15 04:08

本文主要是介绍Lucene4.3进阶开发之纯阳无极(十九),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[b][color=red][size=x-large]原创不易,转载请务必注明,原创地址,谢谢配合!
[url]http://qindongliang.iteye.com/blog/2164583[/url]
[/size][/color][/b]
[b][color=green][size=large]Lucene内置很多的分词器工具包,几乎涵盖了全球所有的国家和地区,最近散仙,在搞多语言分词的一个处理,主要国家有西班牙,葡萄牙,德语,法语,意大利,其实这些语系都与英语非常类似,都是以空格为分割的语种。


那么首先,探讨下分词器的词形还原和词干提取的对搜索的意义?在这之前,先看下两者的概念:
词形还原(lemmatization),是把一个任何形式的语言词汇还原为一般形式(能表达完整语义),而词干提取

(stemming)是抽取词的词干或词根形式(不一定能够表达完整语义)。词形还原和词干提取是词形规范化的两类
重要方式,都能够达到有效归并词形的目的,二者既有联系也有区别

详细介绍,请参考[url=http://blog.csdn.net/march_on/article/details/8935462]这篇文章[/url]


在电商搜索里,词干的抽取,和单复数的还原比较重要(这里主要针对名词来讲),因为这有关搜索的查准率,和查全率的命中,如果我们的分词器没有对这些词做过处理,会造成什么影响呢?那么请看如下的一个例子?

句子: i have two cats

分词器如果什么都没有做:

这时候我们搜cat,就会无命中结果,而必须搜cats才能命中到一条数据,而事实上cat和cats是同一个东西,只不过单词的形式不一样,这样以来,如果不做处理,我们的查全率和查全率都会下降,会涉及影响到我们的搜索体验,所以stemming这一步,在某些场合的分词中至关重要。
[/size][/color][/b]
[b][color=olive][size=large]本篇,散仙,会参考源码分析一下,关于德语分词中中如何做的词干提取,先看下德语的分词声明:
[/size][/color][/b]
	 List<String> list=new ArrayList<String>();		list.add("player");//这里面的词,不会被做词干抽取,词形还原		CharArraySet ar=new CharArraySet(Version.LUCENE_43,list , true);		//分词器的第二个参数是禁用词参数,第三个参数是排除不做词形转换,或单复数的词		GermanAnalyzer sa=new GermanAnalyzer(Version.LUCENE_43,null,ar);


[b][color=olive][size=large]接着,我们具体看下,在德语的分词器中,都经过了哪几部分的过滤处理:[/size][/color][/b]
  protected TokenStreamComponents createComponents(String fieldName,      Reader reader) {	  //标准分词器过滤    final Tokenizer source = new StandardTokenizer(matchVersion, reader);    TokenStream result = new StandardFilter(matchVersion, source);	//转小写过滤    result = new LowerCaseFilter(matchVersion, result);	//禁用词过滤    result = new StopFilter( matchVersion, result, stopwords);	//排除词过滤    result = new SetKeywordMarkerFilter(result, exclusionSet);    if (matchVersion.onOrAfter(Version.LUCENE_36)) {	//在lucene3.6以后的版本,采用如下filter过滤	  //规格化,将德语中的特殊字符,映射成英语      result = new GermanNormalizationFilter(result);	  //stem词干抽取,词性还原      result = new GermanLightStemFilter(result);    } else if (matchVersion.onOrAfter(Version.LUCENE_31)) {	//在lucene3.1至3.6的版本中,采用SnowballFilter处理      result = new SnowballFilter(result, new German2Stemmer());    } else {	//在lucene3.1之前的采用兼容的GermanStemFilter处理      result = new GermanStemFilter(result);    }    return new TokenStreamComponents(source, result);  }


[b][color=olive][size=large]OK,我们从源码中得知,在Lucene4.x中对德语的分词也做了向前和向后兼容,现在我们主要关注在lucene4.x之后的版本如何的词形转换,下面分别看下
result = new GermanNormalizationFilter(result);
result = new GermanLightStemFilter(result);
这两个类的功能:
[/size][/color][/b]
package org.apache.lucene.analysis.de;/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *     http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */import java.io.IOException;import org.apache.lucene.analysis.TokenFilter;import org.apache.lucene.analysis.TokenStream;import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;import org.apache.lucene.analysis.util.StemmerUtil;/** * Normalizes German characters according to the heuristics * of the <a href="http://snowball.tartarus.org/algorithms/german2/stemmer.html"> * German2 snowball algorithm</a>. * It allows for the fact that ä, ö and ü are sometimes written as ae, oe and ue. *  * [list] *   <li> 'ß' is replaced by 'ss' *   <li> 'ä', 'ö', 'ü' are replaced by 'a', 'o', 'u', respectively. *   <li> 'ae' and 'oe' are replaced by 'a', and 'o', respectively. *   <li> 'ue' is replaced by 'u', when not following a vowel or q. * [/list] * <p> * This is useful if you want this normalization without using * the German2 stemmer, or perhaps no stemming at all. *上面的解释说得很清楚,主要是对德文的一些特殊字母,转换成对应的英文处理 * */public final class GermanNormalizationFilter extends TokenFilter {  // FSM with 3 states:  private static final int N = 0; /* ordinary state */  private static final int V = 1; /* stops 'u' from entering umlaut state */  private static final int U = 2; /* umlaut state, allows e-deletion */  private final CharTermAttribute termAtt = addAttribute(CharTermAttribute.class);  public GermanNormalizationFilter(TokenStream input) {    super(input);  }  @Override  public boolean incrementToken() throws IOException {    if (input.incrementToken()) {      int state = N;      char buffer[] = termAtt.buffer();      int length = termAtt.length();      for (int i = 0; i < length; i++) {        final char c = buffer[i];        switch(c) {          case 'a':          case 'o':            state = U;            break;          case 'u':            state = (state == N) ? U : V;            break;          case 'e':            if (state == U)              length = StemmerUtil.delete(buffer, i--, length);            state = V;            break;          case 'i':          case 'q':          case 'y':            state = V;            break;          case 'ä':            buffer[i] = 'a';            state = V;            break;          case 'ö':            buffer[i] = 'o';            state = V;            break;          case 'ü':             buffer[i] = 'u';            state = V;            break;          case 'ß':            buffer[i++] = 's';            buffer = termAtt.resizeBuffer(1+length);            if (i < length)              System.arraycopy(buffer, i, buffer, i+1, (length-i));            buffer[i] = 's';            length++;            state = N;            break;          default:            state = N;        }      }      termAtt.setLength(length);      return true;    } else {      return false;    }  }}

package org.apache.lucene.analysis.de;/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *     http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */import java.io.IOException;import org.apache.lucene.analysis.TokenFilter;import org.apache.lucene.analysis.TokenStream;import org.apache.lucene.analysis.miscellaneous.SetKeywordMarkerFilter;import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;import org.apache.lucene.analysis.tokenattributes.KeywordAttribute;/** * A {@link TokenFilter} that applies {@link GermanLightStemmer} to stem German * words. * <p> * To prevent terms from being stemmed use an instance of * {@link SetKeywordMarkerFilter} or a custom {@link TokenFilter} that sets * the {@link KeywordAttribute} before this {@link TokenStream}. *  * * *这个类,主要做Stemmer(词干提取),而我们主要关注 *GermanLightStemmer这个类的作用 * * */public final class GermanLightStemFilter extends TokenFilter {  private final GermanLightStemmer stemmer = new GermanLightStemmer();  private final CharTermAttribute termAtt = addAttribute(CharTermAttribute.class);  private final KeywordAttribute keywordAttr = addAttribute(KeywordAttribute.class);  public GermanLightStemFilter(TokenStream input) {    super(input);  }  @Override  public boolean incrementToken() throws IOException {    if (input.incrementToken()) {      if (!keywordAttr.isKeyword()) {        final int newlen = stemmer.stem(termAtt.buffer(), termAtt.length());        termAtt.setLength(newlen);      }      return true;    } else {      return false;    }  }}

[b][color=olive][size=large]下面看下,在GermanLightStemmer中,如何做的词干提取:源码如下:[/size][/color][/b]
 package org.apache.lucene.analysis.de;/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *     http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *//*  * This algorithm is updated based on code located at: * http://members.unine.ch/jacques.savoy/clef/ *  * Full copyright for that code follows: *//* * Copyright (c) 2005, Jacques Savoy * All rights reserved. * * Redistribution and use in source and binary forms, with or without  * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this  * list of conditions and the following disclaimer. Redistributions in binary  * form must reproduce the above copyright notice, this list of conditions and * the following disclaimer in the documentation and/or other materials  * provided with the distribution. Neither the name of the author nor the names  * of its contributors may be used to endorse or promote products derived from  * this software without specific prior written permission. *  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. *//** * Light Stemmer for German. * <p> * This stemmer implements the "UniNE" algorithm in: * <i>Light Stemming Approaches for the French, Portuguese, German and Hungarian Languages</i> * Jacques Savoy */public class GermanLightStemmer {  //处理特殊字符映射  public int stem(char s[], int len) {       for (int i = 0; i < len; i++)      switch(s[i]) {        case 'ä':        case 'à':        case 'á':        case 'â': s[i] = 'a'; break;        case 'ö':        case 'ò':        case 'ó':        case 'ô': s[i] = 'o'; break;        case 'ï':        case 'ì':        case 'í':        case 'î': s[i] = 'i'; break;        case 'ü':         case 'ù':         case 'ú':        case 'û': s[i] = 'u'; break;      }    len = step1(s, len);    return step2(s, len);  }  private boolean stEnding(char ch) {    switch(ch) {      case 'b':      case 'd':      case 'f':      case 'g':      case 'h':      case 'k':      case 'l':      case 'm':      case 'n':      case 't': return true;      default: return false;    }  }  //处理基于以下规则的词干抽取和缩减  private int step1(char s[], int len) {    if (len > 5 && s[len-3] == 'e' && s[len-2] == 'r' && s[len-1] == 'n')      return len - 3;    if (len > 4 && s[len-2] == 'e')      switch(s[len-1]) {        case 'm':        case 'n':        case 'r':        case 's': return len - 2;      }    if (len > 3 && s[len-1] == 'e')      return len - 1;    if (len > 3 && s[len-1] == 's' && stEnding(s[len-2]))      return len - 1;    return len;  }  //处理基于以下规则est,er,en等的词干抽取和缩减  private int step2(char s[], int len) {    if (len > 5 && s[len-3] == 'e' && s[len-2] == 's' && s[len-1] == 't')      return len - 3;    if (len > 4 && s[len-2] == 'e' && (s[len-1] == 'r' || s[len-1] == 'n'))      return len - 2;    if (len > 4 && s[len-2] == 's' && s[len-1] == 't' && stEnding(s[len-3]))      return len - 2;    return len;  }}

[b][color=olive][size=large]具体的分析结果如下:[/size][/color][/b]
搜索技术交流群:324714439大数据hadoop交流群:3769321600,将一些德语特殊字符,替换成对应的英文表示1,将所有词干元音还原 a ,o,i,uste(2)(按先后顺序,符合以下任意一项,就完成一次校验(return))2,单词长度大于5的词,以ern结尾的,直接去掉3,单词长度大于4的词,以em,en,es,er结尾的,直接去掉4,单词长度大于3的词,以e结尾的直接去掉5,单词长度大于3的词,以bs,ds,fs,gs,hs,ks,ls,ms,ns,ts结尾的,直接去掉sstep(3)(按先后顺序,符合以下任意一项,就完成一次校验(return))6,单词长度大于5的词,以est结尾的,直接去掉7,单词长度大于4的词,以er或en结尾的直接去掉8,单词长度大于4的词,bst,dst,fst,gst,hst,kst,lst,mst,nst,tst,直接去掉后两位字母st

[b][color=olive][size=large]最后,结合网上资料分析,基于er,en,e,s结尾的是做单复数转换的,其他的几条规则主要是对非名词的单词,做词干抽取。

[/size][/color][/b]
[b][color=red][size=x-large]原创不易,转载请务必注明,原创地址,谢谢配合!
[url]http://qindongliang.iteye.com/blog/2164583[/url]
[/size][/color][/b]

这篇关于Lucene4.3进阶开发之纯阳无极(十九)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/990764

相关文章

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Python中对FFmpeg封装开发库FFmpy详解

《Python中对FFmpeg封装开发库FFmpy详解》:本文主要介绍Python中对FFmpeg封装开发库FFmpy,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、FFmpy简介与安装1.1 FFmpy概述1.2 安装方法二、FFmpy核心类与方法2.1 FF

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Python使用smtplib库开发一个邮件自动发送工具

《Python使用smtplib库开发一个邮件自动发送工具》在现代软件开发中,自动化邮件发送是一个非常实用的功能,无论是系统通知、营销邮件、还是日常工作报告,Python的smtplib库都能帮助我们... 目录代码实现与知识点解析1. 导入必要的库2. 配置邮件服务器参数3. 创建邮件发送类4. 实现邮件

基于Python开发一个有趣的工作时长计算器

《基于Python开发一个有趣的工作时长计算器》随着远程办公和弹性工作制的兴起,个人及团队对于工作时长的准确统计需求日益增长,本文将使用Python和PyQt5打造一个工作时长计算器,感兴趣的小伙伴可... 目录概述功能介绍界面展示php软件使用步骤说明代码详解1.窗口初始化与布局2.工作时长计算核心逻辑3

python web 开发之Flask中间件与请求处理钩子的最佳实践

《pythonweb开发之Flask中间件与请求处理钩子的最佳实践》Flask作为轻量级Web框架,提供了灵活的请求处理机制,中间件和请求钩子允许开发者在请求处理的不同阶段插入自定义逻辑,实现诸如... 目录Flask中间件与请求处理钩子完全指南1. 引言2. 请求处理生命周期概述3. 请求钩子详解3.1