Realtime_Multi-Person_Pose_Estimation训练问题

2024-05-15 00:58

本文主要是介绍Realtime_Multi-Person_Pose_Estimation训练问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

https://blog.csdn.net/kkae8643150/article/details/102711101

前言
最近在研究Realtime_Multi-Person_Pose_Estimation的训练和再训练的过程。
参考 https://blog.csdn.net/qq_38469553/article/details/82119292

以及官方github
https://github.com/ZheC/Realtime_Multi-Person_Pose_Estimation

开始安装
1)Run cd training; bash getData.sh to obtain the COCO images in dataset/COCO/images/, keypoints annotations in dataset/COCO/annotations/ and COCO official toolbox in dataset/COCO/coco/.

打开getData.sh看到里面都是初始化文件夹,下载coco api和下载coco2014数据集,一起要40G左右,一开始就这么难,后面咋玩0.0

2)Run getANNO.m in matlab to convert the annotation format from json to mat in dataset/COCO/mat/.
要在matlab里运行,还得下一个matlab for linux
参考 https://blog.51cto.com/ajxiaocainiao/2307618
又是10G左右,囧

ps:下载完成后安装matlab,安装第二个iso的时候,必须重新打开一个终端(提前打开挂载会报错),然后再挂载才能挂上去。

安装并激活完毕后,进入到项目文件夹\training目录,执行matlab打开程序,在matlab中执行getANNO
这时候会在/dataset/COCO/mat/中生成
coco_kpt.mat coco_val.mat
由/dataset/COCO/annotations目录中的 person_keypoints_train2014.json和person_keypoints_val2014.json 转换而来

3)Run genCOCOMask.m in matlab to obatin the mask images for unlabeled person. You can use ‘parfor’ in matlab to speed up the code.
在matlab中执行genCOCOMask

Error1:

Undefined function or variable 'maskApiMex'.

解决办法:
进入 dataset/COCO/coco/MatlabAPI
执行 matlab启动
在matlab中执行 : mex('CFLAGS=\$CFLAGS -Wall -std=c99','-largeArrayDims','private/maskApiMex.c','../common/maskApi.c','-I../common/','-outdir','private');
最后显示  
MEX completed successfully.
重新执行 genCOCOMask 可以正常运行
1
2
3
4
5
6
7
8
9
ps:数据集过大,这套流程貌似主要用作解析coco的标注,可以自行把数据集处理小一点(包括图片和json),方便一开始研究它的数据处理流程。减少成training2000,val300,我的速度快多了。这个步骤生成了很多mask图像,会发现数据集中很多图像被筛掉了,生成的mask都是人物图像

4)Run genJSON(‘COCO’) to generate a json file in dataset/COCO/json/ folder. The json files contain raw informations needed for training.

在matlab中输入:
genJSON(‘COCO’)
运行之后在dataset/COCO/json/下得到一个json文件,大概结构如下:

{'root':[
{
                        "dataset": "COCO",
                        "isValidation": 0.000,
                        "img_paths": "train2014/COCO_train2014_000000000036.jpg",
                        "img_width": 481.000,
                        "img_height": 640.000,
                        "objpos": [322.885,395.485],
                        "image_id": 36.000,
                        "bbox": [167.580,162.890,310.610,465.190],
                        "segment_area": 86145.297,
                        "num_keypoints": 13.000,

                        "joint_self": [
                                [250.000,244.000,1.000],
                                [265.000,223.000,1.000],
                                [235.000,235.000,1.000],
                                [309.000,227.000,1.000],
                                [235.000,253.000,1.000],
                                [355.000,337.000,1.000],
                                [215.000,342.000,1.000],
                                [407.000,494.000,1.000],
                                [213.000,520.000,1.000],
                                [445.000,617.000,1.000],
                                [244.000,447.000,1.000],
                                [338.000,603.000,1.000],
                                [267.000,608.000,1.000],
                                [0.000,0.000,2.000],
                                [0.000,0.000,2.000],
                                [0.000,0.000,2.000],
                                [0.000,0.000,2.000]
                        ],
                        "scale_provided": 1.264,
                        "joint_others": [],
                        "annolist_index": 1.000,
                        "people_index": 1.000,
                        "numOtherPeople": 0.000,
                        "scale_provided_other": {
                                "_ArrayType_": "double",
                                "_ArraySize_": [0,0],
                                "_ArrayData_": null
                        },
                        "objpos_other": {
                                "_ArrayType_": "double",
                                "_ArraySize_": [0,0],
                                "_ArrayData_": null
                        },
                        "bbox_other": {
                                "_ArrayType_": "double",
                                "_ArraySize_": [0,0],
                                "_ArrayData_": null
                        },
                        "segment_area_other": {
                                "_ArrayType_": "double",
                                "_ArraySize_": [0,0],
                                "_ArrayData_": null
                        },
                        "num_keypoints_other": {
                                "_ArrayType_": "double",
                                "_ArraySize_": [0,0],
                                "_ArrayData_": null
                        }
},

{},
...
]}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
5)Run python genLMDB.py to generate your LMDB. (You can also download our LMDB for the COCO dataset (189GB file) by: bash get_lmdb.sh)
这个LMDB有点大了,还好我的数据集变小了
运行前要修改为自己的路径

elif "COCO" in data[idx]['dataset']:
            path_header = 'xxxx/training/dataset/COCO/images/'

...

if __name__ == "__main__":
    #writeLMDB(['MPI'], '/home/zhecao/MPI_pose/lmdb', 1)
    writeLMDB(['COCO'], 'xxxx/training/dataset/COCO/lmdb', 1)

1
2
3
4
5
6
7
8
9
在系统中运行 python3 genLMDB.py

Error1:
No module named ‘lmdb’
需要安装下 pip install lmdb

Error2:
No module named ‘caffe’
这个好像要用到下一步编译出来的pycaffe,先做第6步

6)Download our modified caffe: caffe_train. Compile pycaffe. It will be merged with caffe_rtpose (for testing) soon.
编译这个修改版的caffe
make -j4

Error1:

src/caffe/cpm_data_transformer.cpp:4:39: fatal error: opencv2/contrib/contrib.hpp: No such file or directory
 #include <opencv2/contrib/contrib.hpp>
1
2
解决办法

vim src/caffe/cpm_data_transformer.cpp

然后将

#include <opencv2/contrib/contrib.hpp>

这一行注释掉,然后重新编译即可。
1
2
3
4
5
6
7
Error2:

build_release/src/caffe/proto/caffe.pb.h:12:2: error: #error This file was generated by a newer version of protoc which is
1
据说是protoc版本冲突
使用 whereis protoc 还真有好几个

解决办法

在Makefile 中修改这两句:
$(Q)protoc --proto_path=$(PROTO_SRC_DIR) --cpp_out=$(PROTO_BUILD_DIR) $&lt;
$(Q)protoc --proto_path=$(PROTO_SRC_DIR) --python_out=$(PY_PROTO_BUILD_DIR) $&lt;

$(Q)/usr/bin/protoc --proto_path=$(PROTO_SRC_DIR) --cpp_out=$(PROTO_BUILD_DIR) $&lt;
$(Q)/usr/bin/protoc --proto_path=$(PROTO_SRC_DIR) --python_out=$(PY_PROTO_BUILD_DIR) $&lt;

即把开头的"protoc"补全路径即可 (/usr/bin/protoc即为自己向指定给的版本路径)

注:这种修改不会影响系统默认的protoc版本,只会在caffe编译的时候调用相应的proto版本
make clean
make -j4 就没有这个错了
1
2
3
4
5
6
7
8
9
10
11
12
Error3:

 fatal error: driver_types.h: No such file or directory
1
将Makefile.config中CUDA_DIR路径改为我的cuda路径,他的cuda版本才7.5,我的是10.0

Error4:

error: too few arguments to function ‘cudnnStatus_t cudnnSetConvolution2dDescriptor(cudnnConvolutionDescriptor_t,
1
版本不一样,方法也就报错了。
将官方版本中的/include/caffe/util/cudnn.hpp 替换掉编译版本对应的文件

Error5:

hdf5_data_layer.cpp:13:18: fatal error: hdf5.h: No such file or directory
1
解决方案

首先安装 sudo apt-get install libhdf5-serial-dev
Step 1

在Makefile.config文件的第85行,添加/usr/include/hdf5/serial/ 到 INCLUDE_DIRS,也就是把下面第一行代码改为第二行代码。

INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include

INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/

Step 2

在Makefile文件的第173行,把 hdf5_hl 和hdf5修改为hdf5_serial_hl 和 hdf5_serial,也就是把下面第一行代码改为第二行代码。

LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_hl hdf5


LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Error6:

Unsupported gpu architecture 'compute_20'

解决方案:
在最新caffe Makefile.config有这么一句# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility. 我的是10.0所以要注释掉20-21
1
2
3
4
Error7:

/usr/bin/x86_64-linux-gnu-ld: cannot find -lopencv_contrib
我的opencv不存在这个库,将Makefile中的opencv_contrib去掉
1
2
Error8:

undefined reference to `cv::imwrite(cv::String const&, cv::_InputArray const&, std::vector<int, std::allocator<int> > const&)'
makefile中打印
$(warning >>>>>>>>>>>>>>>>>>>> LDFLAGS :$(LDFLAGS))
查看库依赖,有可能是so文件冲突,我的显示的是用了4.1.0的库文件,改为之前自带的3.2版本更接近他的开发环境,去掉多余的依赖后,make clean 
make -j4 编译成功
1
2
3
4
5
接着执行 make pycaffe
会看到以下内容,这次没有报错

CXX/LD -o python/caffe/_caffe.so python/caffe/_caffe.cpp
touch python/caffe/proto/__init__.py
PROTOC (python) src/caffe/proto/caffe.proto
1
2
3
生成的pycaffe 位于 python/caffe

修改genLMDB.py中的caffe路径为我的路径,继续执行第5步
Error1:
ImportError: dynamic module does not define module export function (PyInit__caffe)
据说是要安装到低版本python才行,心累,conda部署个python2.7的环境,提示安装其他软件这里就不写了,conda安装不了就用pip
1
2
Error2:

/usr/lib/libgdal.so.20: undefined symbol: sqlite3_column_table_name
在环境里再安装个
conda install gdal
1
2
3
Error3:

No module named google.protobuf.internal
conda install protobuf
1
2
Error4:

TypeError: 'NoneType' object has no attribute '__getitem__'
终于报的不是环境错误了,调试了一下,发现mask2014文件夹路径跟genCOCOMask不一致,导致读不出数据,修改其中一个,保持一致就好了,这里直接把mask2014移动到images中
1
2
运行完成后会生成data.mdb和lock.mdb

8)Run python setLayers.py --exp 1 to generate the prototxt and shell file for training.
这一步可以跳过,因为官方提供了example_proto
修改相关位置完成训练

https://blog.csdn.net/kkae8643150/article/details/102711101

这篇关于Realtime_Multi-Person_Pose_Estimation训练问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/990355

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

nginx中端口无权限的问题解决

《nginx中端口无权限的问题解决》当Nginx日志报错bind()to80failed(13:Permissiondenied)时,这通常是由于权限不足导致Nginx无法绑定到80端口,下面就来... 目录一、问题原因分析二、解决方案1. 以 root 权限运行 Nginx(不推荐)2. 为 Nginx

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原