神经网络中的误差反向传播(Backpropagation)方法理解

2024-05-15 00:20

本文主要是介绍神经网络中的误差反向传播(Backpropagation)方法理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

想象一下,神经网络就像是一个复杂的迷宫,里面有许多交叉路口(神经元),每个路口都有指示牌告诉你往哪个方向走(权重),而你的目标是找到从入口到出口的最佳路径,使得从起点到终点的路程最短或达到某个最优目标。

神经网络简述

神经网络是由许多层神经元组成的,每一层都连接着下一层,就像是一层层的过滤器,每层都在对输入的信息做加工处理。每个神经元都会接收一些输入值,然后根据内部设置的权重(就像是它对每个输入重视的程度)和一个偏置项(类似于起始点的位置),通过一个激活函数(决定信号是否应该继续传递的门槛),产生一个输出值传递给下一层。

误差反向传播的目的

当你训练神经网络时,实际上是想让它学会从输入预测正确的输出。但一开始,网络内的权重和偏置都是随机设定的,很可能导致预测结果与实际相差甚远。误差反向传播算法就是用来调整这些初始设置的,目的是最小化预测输出与实际结果之间的差距,也就是误差。

如何工作

  1. 前向传播:首先,我们给神经网络一个输入,它会经过一系列的计算(前向传播),最终给出一个预测输出。

  2. 计算误差:接着,我们会比较这个预测输出和真实的输出,计算它们之间的差异,这被称为损失(或误差)。

  3. 反向传播误差:现在关键的一步来了,我们要把这个误差反向传递回网络,从最后一层开始,一直到第一层。想象一下,你在迷宫终点发现走错了路,你需要回溯,告诉每一个交叉口(神经元)它对错误的贡献有多大。

    • 这个过程利用了链式法则,逐层计算每个权重和偏置如何影响了最终的误差。形象地说,就是看看在迷宫中,哪些指示牌(权重)误导了你,需要怎样调整才能更接近正确路径。
  4. 更新权重和偏置:知道每个权重和偏置的“罪责”后,我们就可以依据这个信息来微调它们。通常是按照误差梯度(误差变化最快的方向)的负方向来调整,这就是梯度下降法。就像下山时,你会朝着最陡峭的路径走,以便更快到达谷底。

使用场景示例

误差反向传播是一个强大的工具,它允许神经网络从错误中学习并逐步优化自身,从而在各种复杂任务中达到高精度的表现。下面将给出一个示例:

神经网络的比喻:快递公司的物流网络

想象一下,神经网络是一个遍布全球的快递公司,每个城市代表一个神经元,城市间的道路则是神经元之间的连接,快递包裹就是信息,而包裹上的标签(权重)决定了它在这条路上行驶的速度。我们的目标是确保从北京(输入层)寄出的包裹能快速、准确地到达纽约(输出层)。

前向传播:包裹的出发与传递

  1. 包裹打包(输入处理):从北京有一批包裹要发往纽约,每个包裹内含的信息(如货物重量、体积)对应于神经网络的输入数据。

  2. 运输过程(逐层计算):包裹从北京出发,经过多个中转城市(隐藏层的神经元)。在每个城市,包裹可能被拆分、重组,甚至根据当地规则(激活函数)决定是否继续发送。包裹上的标签(权重)决定了它在该城市停留的时间以及如何分配到下一段路线上。

  3. 抵达纽约(预测输出):最终,所有经过处理的信息汇聚到纽约,形成一个预测结果,比如“这是一辆红色的自行车”。

发现问题:包裹送错地址(计算误差)

如果实际上包裹应该送到的是“这是一辆蓝色的汽车”,那么就出现了误差。我们需要找出是哪段路程、哪个城市的处理出了问题,导致包裹送错了地方。

反向传播:错误的反馈与修正

  1. 回溯错误(误差反传):从纽约开始,我们逆向通知沿途的城市:“你们处理这批包裹的方法有问题,导致送错了地方。”每个城市收到反馈后,都要评估自己在其中的责任大小,即它对最终错误的贡献。

  2. 优化路线(权重调整):知道了各自的问题后,每个城市开始调整自己的规则和标签(权重和偏置的调整)。比如,某条路因为总是导致包裹延误,那么就减少这条路上的包裹流量(减小权重);或者某个城市发现自己经常把“红色”标签的包裹误导向“蓝色”区域,就调整规则以避免这种错误。

  3. 再次尝试(迭代训练):经过这样的调整,神经网络相当于优化了整个物流系统,再次尝试运输同样的包裹时,希望这次能够更准确地送达目的地。

实际应用案例:手写数字识别

假设我们要教神经网络识别手写的“5”。开始时,网络可能会将某些“3”也识别为“5”。通过前向传播得到错误的预测,再通过误差反向传播,网络逐渐学习到“5”特有的曲线形状和位置特征,与“3”的区别,从而在之后的尝试中更准确地区分这两个数字。

通过这个快递公司的比喻,希望能帮助您更直观地理解神经网络中误差反向传播的过程及其重要性。简而言之,它是一种自我修正机制,让神经网络能够从错误中学习,不断优化自己,最终实现高效、准确的任务执行。

这篇关于神经网络中的误差反向传播(Backpropagation)方法理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/990278

相关文章

Python字符串处理方法超全攻略

《Python字符串处理方法超全攻略》字符串可以看作多个字符的按照先后顺序组合,相当于就是序列结构,意味着可以对它进行遍历、切片,:本文主要介绍Python字符串处理方法的相关资料,文中通过代码介... 目录一、基础知识:字符串的“不可变”特性与创建方式二、常用操作:80%场景的“万能工具箱”三、格式化方法

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

基于SpringBoot实现分布式锁的三种方法

《基于SpringBoot实现分布式锁的三种方法》这篇文章主要为大家详细介绍了基于SpringBoot实现分布式锁的三种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、基于Redis原生命令实现分布式锁1. 基础版Redis分布式锁2. 可重入锁实现二、使用Redisso

自定义注解SpringBoot防重复提交AOP方法详解

《自定义注解SpringBoot防重复提交AOP方法详解》该文章描述了一个防止重复提交的流程,通过HttpServletRequest对象获取请求信息,生成唯一标识,使用Redis分布式锁判断请求是否... 目录防重复提交流程引入依赖properties配置自定义注解切面Redis工具类controller

Java调用DeepSeek API的8个高频坑与解决方法

《Java调用DeepSeekAPI的8个高频坑与解决方法》现在大模型开发特别火,DeepSeek因为中文理解好、反应快、还便宜,不少Java开发者都用它,本文整理了最常踩的8个坑,希望对... 目录引言一、坑 1:Token 过期未处理,鉴权异常引发服务中断问题本质典型错误代码解决方案:实现 Token

Nginx 访问控制的多种方法

《Nginx访问控制的多种方法》本文系统介绍了Nginx实现Web访问控制的多种方法,包括IP黑白名单、路径/方法/参数控制、HTTP基本认证、防盗链机制、客户端证书校验、限速限流、地理位置控制等基... 目录一、IP 白名单与黑名单1. 允许/拒绝指定IP2. 全局黑名单二、基于路径、方法、参数的访问控制

Python中Request的安装以及简单的使用方法图文教程

《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req

nginx跨域访问配置的几种方法实现

《nginx跨域访问配置的几种方法实现》本文详细介绍了Nginx跨域配置方法,包括基本配置、只允许指定域名、携带Cookie的跨域、动态设置允许的Origin、支持不同路径的跨域控制、静态资源跨域以及... 目录一、基本跨域配置二、只允许指定域名跨域三、完整示例四、配置后重载 nginx五、注意事项六、支持

MySQL查看表的历史SQL的几种实现方法

《MySQL查看表的历史SQL的几种实现方法》:本文主要介绍多种查看MySQL表历史SQL的方法,包括通用查询日志、慢查询日志、performance_schema、binlog、第三方工具等,并... 目录mysql 查看某张表的历史SQL1.查看MySQL通用查询日志(需提前开启)2.查看慢查询日志3.

MySQL底层文件的查看和修改方法

《MySQL底层文件的查看和修改方法》MySQL底层文件分为文本类(可安全查看/修改)和二进制类(禁止手动操作),以下按「查看方法、修改方法、风险管控三部分详细说明,所有操作均以Linux环境为例,需... 目录引言一、mysql 底层文件的查看方法1. 先定位核心文件路径(基础前提)2. 文本类文件(可直