代码随想录训练营Day38、39:Leetcode509、70、746、62、63

2024-05-14 19:36

本文主要是介绍代码随想录训练营Day38、39:Leetcode509、70、746、62、63,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Leetcode509:

问题描述:

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1

给定 n ,请计算 F(n) 。

示例 1:

输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:

输入:n = 3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2

示例 3:

输入:n = 4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3

思路解析:

求第n个斐波那契数:f(n)=f(n-1)+f(n-2),只需要初始化f(0)=1,f(1)=1,后面的第n个数可以通过递推式循环求出

代码及注释:

1.非递归版

class Solution {
public:int fib(int n) {if(n<2)return n;//f(n-1) f(n)int num1=0,num2=1;int temp;for(int i=2;i<=n;i++){temp=num2;num2+=num1;num1=temp;}return num2;}
};

2.递归版

class Solution {
public:int fib(int n) {if(n<2)return n;return fib(n-1)+fib(n-2);}
};

Leetcode70:

问题描述:

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

思路解析:

递推式为爬到第n层楼梯:f(n)=f(n-1)+f(n-2)

代码及注释:

class Solution {
public:int climbStairs(int n) {if(n<=2)return n;return climbStairs(n-1)+climbStairs(n-2);}
};

Leetcode746:

问题描述:

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

示例 1:

输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。

示例 2:

输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 。

思路解析:

分别求出从第0层开始走的最短花费f0(n)与从第1层开始走的最短花费f1(n),return min(f0(n),f1(n));

f0(n)=min(f0[n-1]+cost[n-1],f0[n-2]+cost[n-2]);

代码及注释:

class Solution {
public:int f0[1005];int f1[1005];int minCostClimbingStairs(vector<int>& cost) {int n=cost.size();f0[0]=0;f0[1]=cost[0];f1[1]=0;f1[2]=cost[1];for(int i=2;i<=n;i++){f0[i]=min(f0[i-1]+cost[i-1],f0[i-2]+cost[i-2]);}for(int i=3;i<=n;i++){f1[i]=min(f1[i-1]+cost[i-1],f1[i-2]+cost[i-2]);}return min(f0[n],f1[n]);}
};

Leetcode62:

问题描述:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28

思路解析:

第一行的所有点走法只能有一种,第一列的所有点走法只能有一种,其余点位的走法为

dp[i][j]=dp[i-1][j]+dp[i][j-1](i>1&&j>1)

代码及注释:

class Solution {
public:int dp[105][105];int uniquePaths(int m, int n) {for(int i=1;i<=m;i++){for(int j=1;j<=n;j++){if(i==1||j==1)dp[i][j]=1;elsedp[i][j]=dp[i-1][j]+dp[i][j-1];}}return dp[m][n];}
};

Leetcode63:

问题描述:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

思路解析:

特殊情况的处理,第一行存在dp[1][j]有障碍物时,后面的dp[1][j+i](i>=0)都为0,无法到达。

第一列也是如此。当dp[i][j](j>1&&i>1)时,该点无法到达,赋值为0;

代码及注释:

class Solution {
public:int dp[105][105];int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {int n=obstacleGrid.size();int m=obstacleGrid[0].size();for(int i=0;i<n;i++){for(int j=0;j<m;j++){if(obstacleGrid[i][j]==1){dp[i][j]=0;}else{if(i==0||j==0){if(i==0&&j==0)dp[i][j]=1;else if(i==0)dp[i][j]=dp[i][j-1];else dp[i][j]=dp[i-1][j];}else dp[i][j]=dp[i-1][j]+dp[i][j-1];}}}return dp[n-1][m-1];}
};

这篇关于代码随想录训练营Day38、39:Leetcode509、70、746、62、63的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/989659

相关文章

IIS 7.0 及更高版本中的 FTP 状态代码

《IIS7.0及更高版本中的FTP状态代码》本文介绍IIS7.0中的FTP状态代码,方便大家在使用iis中发现ftp的问题... 简介尝试使用 FTP 访问运行 Internet Information Services (IIS) 7.0 或更高版本的服务器上的内容时,IIS 将返回指示响应状态的数字代

MySQL 添加索引5种方式示例详解(实用sql代码)

《MySQL添加索引5种方式示例详解(实用sql代码)》在MySQL数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中,下面给大家分享MySQL添加索引5种方式示例详解(实用sql代码),... 在mysql数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中。索引可以在创建表时定义,也可

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元

Python实现一键PDF转Word(附完整代码及详细步骤)

《Python实现一键PDF转Word(附完整代码及详细步骤)》pdf2docx是一个基于Python的第三方库,专门用于将PDF文件转换为可编辑的Word文档,下面我们就来看看如何通过pdf2doc... 目录引言:为什么需要PDF转Word一、pdf2docx介绍1. pdf2docx 是什么2. by

Spring Security介绍及配置实现代码

《SpringSecurity介绍及配置实现代码》SpringSecurity是一个功能强大的Java安全框架,它提供了全面的安全认证(Authentication)和授权(Authorizatio... 目录简介Spring Security配置配置实现代码简介Spring Security是一个功能强

通过cmd获取网卡速率的代码

《通过cmd获取网卡速率的代码》今天从群里看到通过bat获取网卡速率两段代码,感觉还不错,学习bat的朋友可以参考一下... 1、本机有线网卡支持的最高速度:%v%@echo off & setlocal enabledelayedexpansionecho 代码开始echo 65001编码获取: >

Java集成Onlyoffice的示例代码及场景分析

《Java集成Onlyoffice的示例代码及场景分析》:本文主要介绍Java集成Onlyoffice的示例代码及场景分析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 需求场景:实现文档的在线编辑,团队协作总结:两个接口 + 前端页面 + 配置项接口1:一个接口,将o

SpringBoot实现Kafka动态反序列化的完整代码

《SpringBoot实现Kafka动态反序列化的完整代码》在分布式系统中,Kafka作为高吞吐量的消息队列,常常需要处理来自不同主题(Topic)的异构数据,不同的业务场景可能要求对同一消费者组内的... 目录引言一、问题背景1.1 动态反序列化的需求1.2 常见问题二、动态反序列化的核心方案2.1 ht

IDEA实现回退提交的git代码(四种常见场景)

《IDEA实现回退提交的git代码(四种常见场景)》:本文主要介绍IDEA实现回退提交的git代码(四种常见场景),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.已提交commit,还未push到远端(Undo Commit)2.已提交commit并push到

Kotlin Compose Button 实现长按监听并实现动画效果(完整代码)

《KotlinComposeButton实现长按监听并实现动画效果(完整代码)》想要实现长按按钮开始录音,松开发送的功能,因此为了实现这些功能就需要自己写一个Button来解决问题,下面小编给大... 目录Button 实现原理1. Surface 的作用(关键)2. InteractionSource3.