图像归一化处理

2024-05-14 16:36
文章标签 图像 处理 归一化

本文主要是介绍图像归一化处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

归一化

归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为标量。 在多种计算中都经常用到这种方法。

简单介绍

归一化是一种无量纲处理手段,使物理系统数值的绝对值变成某种相对值关系。简化计算,缩小量值的有效办法。 [1]例如,滤波器中各个频率值以截止频率作归一化后,频率都是截止频率的相对值,没有了量纲。阻抗以电源内阻作归一化后,各个阻抗都成了一种相对阻抗值,“欧姆”这个量纲也没有了。等各种运算都结束后,反归一化一切都复原了。信号处理工具箱中经常使用的是nyquist频率,它被定义为采样频率的二分之一,在滤波器的阶数选择和设计中的截止频率均使用nyquist频率进行归一化处理。例如对于一个采样频率为500hz的系统,400hz的归一化频率就为400/500=0.8,归一化频率范围在[0,1]之间。如果将归一化频率转换为角频率,则将归一化频率乘以2*pi,如果将归一化频率转换为hz,则将归一化频率乘以采样频率的一半。

归一条件

在量子力学里,表达粒子的量子态的波函数必须满足归一条件,也就是说,在空间内找到粒子的概率必须等于1。这性质称为归一性。

归一化导引

一般而言,波函数是一个复函数。可是,概率密度是一个实函数,空间内积分和为1,称为概率密度函数。所以在区域内,找到粒子的概率是1。

因为粒子存在于空间,因此在空间内找到粒子概率是1,所以积分于整个空间将得到1。

假若,从解析薛定谔方程而得到的波函数,其概率是有限的,但不等于1,则可以将波函数乘以一个常数,使概率等于1。或者假若波函数内,已经有一个任意常数,可以设定这任意常数的值,使概率等于1

应用

1.复数阻抗可以归一化写为:Z = R + jωL = R(1 + jωL/R)(复数部分变成了纯数了,没有任何量纲)。

2.微波之中也就是电路分析、信号系统、电磁波传输等,有很多运算都可以如此处理,既保证了运算的便捷,又能凸现出物理量的本质含义。

3.在统计学中,归一化的具体作用是归纳统一样本的统计分布性。归一化在0-1之间是统计的概率分布,归一化在-1--+1之间是统计的坐标分布。即该函数在(-∞,+∞)的积分为1。

薛定谔方程的归一化

薛定谔方程为

其中,H是表征波函数总能量的哈密顿算符,是物理系统的波函数,i是虚数。h是约化普朗克常数。

将波函数归一化为。则薛定谔方程成为

对于归一化,薛定谔方程是个不变式,因为薛定谔方程是个线性微分方程。

一个表达粒子量子态的波函数,必须满足粒子的薛定谔方程。既然和都能够满足同样的薛定谔方程,它们必定都表达同样的量子态。假若不使用归一化的波函数,则只能知道概率的相对大小;否则,使用归一化的波函数,可以知道绝对的概率。这对于量子问题的解析,会提供许多便利。

图像处理中的归一化

原因

图像中,若比较两张图片(两张图片的样式:通道数,数据格式相同、大小:分辨率可以不同)

1.比较两张图片大小,需要判断是否相同的时候;

2.求取较小的一张图片在大图中的位置,需要判断的时候。

这个时候,我们可以使用欧式距离来作为判断函数,如下:

基础就是二维中的两点的距离:

若D=0,说明图片相等;或者是小的一张图片已经找到在大图中的位置。但是上面的D值的取值范围太广,甚至可以达到(0,正无穷大),会超出计算机的计算范围。故使用归一化处理。

处理步骤

1.将这个相似性函数展开,可以得:

2.可以看出,只有第二项是有意义的,因为第一项和第三项的值在选定模板后是固定的。对于欧式距离相似函数,值越大表示越不相似,也就是说,第二项的值越小则越不相似。

将第二项进行归一化:

那么当R(i,j)为1时,表示模板与子图完全相等。

概述图像;

这篇关于图像归一化处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/989268

相关文章

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

Python异常处理之避免try-except滥用的3个核心原则

《Python异常处理之避免try-except滥用的3个核心原则》在Python开发中,异常处理是保证程序健壮性的关键机制,本文结合真实案例与Python核心机制,提炼出避免异常滥用的三大原则,有需... 目录一、精准打击:只捕获可预见的异常类型1.1 通用异常捕获的陷阱1.2 精准捕获的实践方案1.3

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性