利用KMeans进行遥感NDWI进行聚类分割

2024-05-14 15:52

本文主要是介绍利用KMeans进行遥感NDWI进行聚类分割,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

(1)解释

KMeans算法是一种非监督式的聚类算法,于1967年由J. MacQueen提出,聚类的依靠是欧式距离,其核心思想就是将样本划分为几个类别,类里面的数据与类中心的距离最小。类的标签采用类里面样本的均值。

这里利用KMeans进行遥感NDWI归一化水体指数进行简单的聚类分析,主要目的就是聚类出流域和非流域,簇类数为2。手动分割阈值为-0.06,效果和KMeans差不多,若是人为调参太麻烦,可以考虑KMeans进行分割,分割效果如下。

在这里插入图片描述

此程序可以进行常规遥感图像的聚类,但可能代码需做小幅度调整。

(2)源码

#!/usr/bin/env python
# -*- coding:utf-8 -*-
"""
@author: 楠楠星球
@time: 2024/5/13 15:12 
@file: kmeans.py-->test
@project: pythonProject
@# ------------------------------------------(one)--------------------------------------
@# ------------------------------------------(two)--------------------------------------
"""
from matplotlib.image import imread
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from sklearn.cluster import KMeans, k_means# img =imread('NDWI.tif')
img = Image.open('NDWI.tif') #读取的landsat全色影像,若是彩色图像请在此句后面加上.convert("RGB")
NDWI = Image.open('ndwi_006.tif')
img = np.array(img) #转为矩阵
img_bands = 1   #图像的波段或者深度
image = img.reshape(-1, img_bands) #更改图像维度seg_images = [] #存放处理结果
n_clusters = 2  #要聚类的簇类数# 随机生成颜色矩阵
colors = [np.random.randint(0, 255, size=(1, img_bands)) for _ in range(n_clusters)]
# 利用KMeans类进行聚类处理,n_clusters表示簇类数,random_state表示随机种子,n_init='auto'为了防止报错,调用.fit()方法进行处理
Kmeans_res = KMeans(n_clusters=n_clusters,random_state=1000, n_init='auto').fit(image)
# 获取簇的质心
cluster_centers = Kmeans_res.cluster_centers_# 也可利用k_means函数进行处理
# Kmeans_res = Cluster(X=image,n_clusters = 8,random_state=40,n_init='auto')
# cluster_centers = Kmeans_res[0]# 获取簇类中元素的标签
cluster_labels = cluster_centers[Kmeans_res.labels_]
same = np.unique(cluster_labels, axis=0) #查找每一个簇类的标签num = 0 #记数
for color in colors:for index,row in enumerate(cluster_labels):equal = np.array_equal(row, same[num])if equal == True:cluster_labels[index] = colors[num][0]else:continuenum += 1
cluster_image = cluster_labels.reshape(img.shape)
seg_images.append(cluster_image.astype(np.uint8))plt.figure(figsize=(10,5))
plt.subplot(131)
plt.imshow(img,cmap='gray')
plt.title("NDWI_ori_img")
plt.subplot(132)
if n_clusters == 2:plt.imshow(cluster_image/255, cmap='gray')
else:plt.imshow(cluster_image/255)
plt.title("NDWI_Kmeans_img")plt.subplot(133)
plt.imshow(NDWI,cmap='gray')
plt.title('NDWI_img--number:-0.06')
plt.show()

这篇关于利用KMeans进行遥感NDWI进行聚类分割的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/989178

相关文章

Nginx中配置使用非默认80端口进行服务的完整指南

《Nginx中配置使用非默认80端口进行服务的完整指南》在实际生产环境中,我们经常需要将Nginx配置在其他端口上运行,本文将详细介绍如何在Nginx中配置使用非默认端口进行服务,希望对大家有所帮助... 目录一、为什么需要使用非默认端口二、配置Nginx使用非默认端口的基本方法2.1 修改listen指令

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估

MySQL进行分片合并的实现步骤

《MySQL进行分片合并的实现步骤》分片合并是指在分布式数据库系统中,将不同分片上的查询结果进行整合,以获得完整的查询结果,下面就来具体介绍一下,感兴趣的可以了解一下... 目录环境准备项目依赖数据源配置分片上下文分片查询和合并代码实现1. 查询单条记录2. 跨分片查询和合并测试结论分片合并(Shardin

SpringBoot结合Knife4j进行API分组授权管理配置详解

《SpringBoot结合Knife4j进行API分组授权管理配置详解》在现代的微服务架构中,API文档和授权管理是不可或缺的一部分,本文将介绍如何在SpringBoot应用中集成Knife4j,并进... 目录环境准备配置 Swagger配置 Swagger OpenAPI自定义 Swagger UI 底

基于Python Playwright进行前端性能测试的脚本实现

《基于PythonPlaywright进行前端性能测试的脚本实现》在当今Web应用开发中,性能优化是提升用户体验的关键因素之一,本文将介绍如何使用Playwright构建一个自动化性能测试工具,希望... 目录引言工具概述整体架构核心实现解析1. 浏览器初始化2. 性能数据收集3. 资源分析4. 关键性能指

Nginx进行平滑升级的实战指南(不中断服务版本更新)

《Nginx进行平滑升级的实战指南(不中断服务版本更新)》Nginx的平滑升级(也称为热升级)是一种在不停止服务的情况下更新Nginx版本或添加模块的方法,这种升级方式确保了服务的高可用性,避免了因升... 目录一.下载并编译新版Nginx1.下载解压2.编译二.替换可执行文件,并平滑升级1.替换可执行文件

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩

一文解密Python进行监控进程的黑科技

《一文解密Python进行监控进程的黑科技》在计算机系统管理和应用性能优化中,监控进程的CPU、内存和IO使用率是非常重要的任务,下面我们就来讲讲如何Python写一个简单使用的监控进程的工具吧... 目录准备工作监控CPU使用率监控内存使用率监控IO使用率小工具代码整合在计算机系统管理和应用性能优化中,监

如何使用Lombok进行spring 注入

《如何使用Lombok进行spring注入》本文介绍如何用Lombok简化Spring注入,推荐优先使用setter注入,通过注解自动生成getter/setter及构造器,减少冗余代码,提升开发效... Lombok为了开发环境简化代码,好处不用多说。spring 注入方式为2种,构造器注入和setter