c++单精度和双精度的运算例子(计算机占位存储)

2024-05-14 11:08

本文主要是介绍c++单精度和双精度的运算例子(计算机占位存储),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

计算机中float, double类型数据分别占据4,8个字节,其中float类型和double可以表示的小数位数不同,导致了精度不同。double的精度更高。

计算机中数据的表示由:符号位, 指数位,尾数位组成。比如一个float类型数字的二进制由左到右依次是符号位,指数位,尾数位。

类型符号位指数位尾数位总位数(bit)
float182332
double1115264

数字1.4在计算机中的存储转换如下:

先将整数和小数都变二进制表示:1.0110 0110 0110 0110 0110 011,然后整数部分不需要右移,所以float的指数位=2*7-1+0=127;double的指数位=2*10-1+0=1023。各个部分的二进制表示如下。

 

1.4的不同存储符号位指数位尾数位16进制表示
float0011111110110 0110 0110 0110 0110 0113FB33333
double0011111111110110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 01103FF6666666666666


 

在c++单精度和双精度的运算结合如下两个test示例理解如下:

#include <iostream>float f1 =1.4;
float f2 = 5.0;
float f3 = 7.0;
int i = 7;
using namespace std;void test1()
{printf("test %f %f %f\n", f1 * f2, f1 * 5.0, f3 / f1);cout << (f1 * f2 == i) << '\t' << (f1 * f2 == f3) << endl;cout << (f1 * 5.0f == f3) << '\t' << (f1 * f2 == f1 * 5.0f) << endl;cout << (f3 / f1 == 5.0) << '\t' << (f3 / f1 == f2);
}void test2()
{printf("test %f %f %f\n", f1 * f2, f1 * 5.0, f3 / f1);cout << (f1 * f2 == i) << '\t' << (f1 * f2 == f3) << endl;cout << (f1 * 5.0 == f3) << '\t' << (f1 * f2 == f1 * 5.0) << endl;cout << (f3 / f1 == 5.0) << '\t' << (f3 / f1 == f2);
}
int main(void)
{cout<<"test1"<<endl;test1();cout<<endl<<"test2"<<endl;test2();cout<<endl<<endl<<"验证输出"<<endl;double f11=1.4;cout<<"sizeof(5.0)="<<sizeof(5.0)<<", sizeof(f1*f2)=" <<sizeof(f1*f2)<<", sizeof(f3/f1)=" <<sizeof(f3/f1)<<endl;cout.precision(20);cout<<"1.4的单精度 f1="<<f1<<endl<<"1.4的双精度 f11="<<f11<<endl;cout<<"双精度转单精度 double2float: "<<float(f11)<<endl;cout<<"单精度转双精度 float2double: "<<double(f1)<<endl;cout<<"单精度*单精度 f1*5.0f="<<f1*5.0f<<", 单精度*双精度 f1*5.0="<<f1*5.0<<", 双精度*双精度 f11*5.0="<<f11*5.0<<endl;cout<<"当单精度*单精度结果有小数时候:"<<endl; cout<<"单精度*单精度 f1*6.0f="<<f1*6.0f<<", 单精度*双精度 f1*6.0="<<f1*6.0<<", 双精度*双精度 f11*6.0="<<f11*6.0<<endl;cout<<endl<<"i.和j. 的验证:"<<endl;cout<<"f3/f2==1.4 =>"<< (f3/f2==1.4)<<",  f3/f2==f1 =>"<<(f3/f2==f1)<<endl;cout<<endl<<"d.的假设验证:"<<endl;cout<<"float(f1*5.0)==i =>"<<(float(f1*5.0)==i)<<endl;f1=0.125;cout<<"f1 * 56.0 == i =>"<< (f1 * 56.0 == i)<<endl;return 0;}

test1和test2的两段代码涉及的是float类型和double类型数据在计算机中的存储问题。

用到的基础知识:

1, C++中默认5.0是一个double类型,5.0f表示指定这是一个float类型的数字。

2, 精度(float*double)=> double*double=精度(double), 精度(float*float)=精度(float), 精度(double*double)=精度(double)

3,  float类型用4个字节表示,double类型用8个字节表示,double可以用更多的位表示小数点部分(这部分知识可以参考数字在计算机中的表示,https://blog.csdn.net/ultrakang/article/details/39322275),所以有小数的情况下,double比float精度更高。而float转double精度不变,double转float精度降低。

4,float和double转换中精度降低的情况只作用在存在小数位情况。且只存在于小数位的非0尾数大于23bit情况下(因为float尾数是23个bit, double尾数是52个bit)。

 

再来看本例中给定的数据 f1=1.4; f2=5.0; f3=7.0; i=7。共进行了如下的运算结果比对,跟着对应的结果分析。

a.  f1 * f2 == i       =》1,左边 f1*f2 等效于 float*float,结果仍然是float,恰好是整数,所以f1 * f2 == i 成立。

b.  f1 * f2 == f3     =》1,左边 同 a. ,右边f3是float类型,不涉及数据类型转换,精度不变,所以f1 * f2 == f3 成立。

c.  f1 * 5.0f == i    =》1,左边 f1*5.0f 等效于float*float,其它同a. ,所以f1 * 5.0f == i  成立 。

d.  f1 * 5.0 == i    =》0,左边 f1*5.0等效于double*double, f1=1.4,1.4作为float和double两种类型在计算机存储的精度是不同的,并且结果也是double类型,精度更高,所以f1 * 5.0 == i 不成立,如果将f1*5.0转换成float类型则成立,即:float(f1*5.0)==i 成立。或者将本例中f1=1.4换成f1=0.125(即一个小数点位数可在23bit之内表示的数 , 则f1 * 56.0 == i 成立,因为0.125值的float和double类型在计算机存储中是一样的。

e.  f1 * f2 == f1 * 5.0f   =》1,右边f1 * 5.0f是float*float,不涉及类型转换问题,同b. 所以f1 * f2 == f1 * 5.0f 成立。

f.   f1 * f2 == f1 * 5.0   =》0,右边同d. 1.4在计算机中作为float和double表示的精度不同,f1*5.0是double*double=double,比f1*f2的float*float=float精度更高,所以f1 * f2 == f1 * 5.0不成立。

g.  f3 / f1 == 5.0     =》1,  左边float/foat=float,结果用float类型表示,小数位尾数为0,右边double类型的5.0的小数位尾数也都是0,所以f3 / f1 == 5.0 成立。可以结合下面的 i. 来理解。

h.  f3 / f1 == f2      =》1, 左边和右边都是float类型,精度不变,所以 f3 / f1 == f2成立。可以结合下面的j. 来理解。

补充:

i.  f3 / f2 == 1.4   =》0, 左边结果float类型,右边1.4是double类型,精度不同,所以f3 / f2 == 1.4不成立。

j. f3 / f2 == f1   =》1,右边类型是float,1.4用float表示,不涉及精度降低问题,所以f3 / f2 == f1 成立。

cout默认打印出7位有效数字,所以第一行打印的结果都一样。

上面的验证结果如图:

这篇关于c++单精度和双精度的运算例子(计算机占位存储)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/988580

相关文章

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

C++作用域和标识符查找规则详解

《C++作用域和标识符查找规则详解》在C++中,作用域(Scope)和标识符查找(IdentifierLookup)是理解代码行为的重要概念,本文将详细介绍这些规则,并通过实例来说明它们的工作原理,需... 目录作用域标识符查找规则1. 普通查找(Ordinary Lookup)2. 限定查找(Qualif

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一