c++单精度和双精度的运算例子(计算机占位存储)

2024-05-14 11:08

本文主要是介绍c++单精度和双精度的运算例子(计算机占位存储),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

计算机中float, double类型数据分别占据4,8个字节,其中float类型和double可以表示的小数位数不同,导致了精度不同。double的精度更高。

计算机中数据的表示由:符号位, 指数位,尾数位组成。比如一个float类型数字的二进制由左到右依次是符号位,指数位,尾数位。

类型符号位指数位尾数位总位数(bit)
float182332
double1115264

数字1.4在计算机中的存储转换如下:

先将整数和小数都变二进制表示:1.0110 0110 0110 0110 0110 011,然后整数部分不需要右移,所以float的指数位=2*7-1+0=127;double的指数位=2*10-1+0=1023。各个部分的二进制表示如下。

 

1.4的不同存储符号位指数位尾数位16进制表示
float0011111110110 0110 0110 0110 0110 0113FB33333
double0011111111110110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 01103FF6666666666666


 

在c++单精度和双精度的运算结合如下两个test示例理解如下:

#include <iostream>float f1 =1.4;
float f2 = 5.0;
float f3 = 7.0;
int i = 7;
using namespace std;void test1()
{printf("test %f %f %f\n", f1 * f2, f1 * 5.0, f3 / f1);cout << (f1 * f2 == i) << '\t' << (f1 * f2 == f3) << endl;cout << (f1 * 5.0f == f3) << '\t' << (f1 * f2 == f1 * 5.0f) << endl;cout << (f3 / f1 == 5.0) << '\t' << (f3 / f1 == f2);
}void test2()
{printf("test %f %f %f\n", f1 * f2, f1 * 5.0, f3 / f1);cout << (f1 * f2 == i) << '\t' << (f1 * f2 == f3) << endl;cout << (f1 * 5.0 == f3) << '\t' << (f1 * f2 == f1 * 5.0) << endl;cout << (f3 / f1 == 5.0) << '\t' << (f3 / f1 == f2);
}
int main(void)
{cout<<"test1"<<endl;test1();cout<<endl<<"test2"<<endl;test2();cout<<endl<<endl<<"验证输出"<<endl;double f11=1.4;cout<<"sizeof(5.0)="<<sizeof(5.0)<<", sizeof(f1*f2)=" <<sizeof(f1*f2)<<", sizeof(f3/f1)=" <<sizeof(f3/f1)<<endl;cout.precision(20);cout<<"1.4的单精度 f1="<<f1<<endl<<"1.4的双精度 f11="<<f11<<endl;cout<<"双精度转单精度 double2float: "<<float(f11)<<endl;cout<<"单精度转双精度 float2double: "<<double(f1)<<endl;cout<<"单精度*单精度 f1*5.0f="<<f1*5.0f<<", 单精度*双精度 f1*5.0="<<f1*5.0<<", 双精度*双精度 f11*5.0="<<f11*5.0<<endl;cout<<"当单精度*单精度结果有小数时候:"<<endl; cout<<"单精度*单精度 f1*6.0f="<<f1*6.0f<<", 单精度*双精度 f1*6.0="<<f1*6.0<<", 双精度*双精度 f11*6.0="<<f11*6.0<<endl;cout<<endl<<"i.和j. 的验证:"<<endl;cout<<"f3/f2==1.4 =>"<< (f3/f2==1.4)<<",  f3/f2==f1 =>"<<(f3/f2==f1)<<endl;cout<<endl<<"d.的假设验证:"<<endl;cout<<"float(f1*5.0)==i =>"<<(float(f1*5.0)==i)<<endl;f1=0.125;cout<<"f1 * 56.0 == i =>"<< (f1 * 56.0 == i)<<endl;return 0;}

test1和test2的两段代码涉及的是float类型和double类型数据在计算机中的存储问题。

用到的基础知识:

1, C++中默认5.0是一个double类型,5.0f表示指定这是一个float类型的数字。

2, 精度(float*double)=> double*double=精度(double), 精度(float*float)=精度(float), 精度(double*double)=精度(double)

3,  float类型用4个字节表示,double类型用8个字节表示,double可以用更多的位表示小数点部分(这部分知识可以参考数字在计算机中的表示,https://blog.csdn.net/ultrakang/article/details/39322275),所以有小数的情况下,double比float精度更高。而float转double精度不变,double转float精度降低。

4,float和double转换中精度降低的情况只作用在存在小数位情况。且只存在于小数位的非0尾数大于23bit情况下(因为float尾数是23个bit, double尾数是52个bit)。

 

再来看本例中给定的数据 f1=1.4; f2=5.0; f3=7.0; i=7。共进行了如下的运算结果比对,跟着对应的结果分析。

a.  f1 * f2 == i       =》1,左边 f1*f2 等效于 float*float,结果仍然是float,恰好是整数,所以f1 * f2 == i 成立。

b.  f1 * f2 == f3     =》1,左边 同 a. ,右边f3是float类型,不涉及数据类型转换,精度不变,所以f1 * f2 == f3 成立。

c.  f1 * 5.0f == i    =》1,左边 f1*5.0f 等效于float*float,其它同a. ,所以f1 * 5.0f == i  成立 。

d.  f1 * 5.0 == i    =》0,左边 f1*5.0等效于double*double, f1=1.4,1.4作为float和double两种类型在计算机存储的精度是不同的,并且结果也是double类型,精度更高,所以f1 * 5.0 == i 不成立,如果将f1*5.0转换成float类型则成立,即:float(f1*5.0)==i 成立。或者将本例中f1=1.4换成f1=0.125(即一个小数点位数可在23bit之内表示的数 , 则f1 * 56.0 == i 成立,因为0.125值的float和double类型在计算机存储中是一样的。

e.  f1 * f2 == f1 * 5.0f   =》1,右边f1 * 5.0f是float*float,不涉及类型转换问题,同b. 所以f1 * f2 == f1 * 5.0f 成立。

f.   f1 * f2 == f1 * 5.0   =》0,右边同d. 1.4在计算机中作为float和double表示的精度不同,f1*5.0是double*double=double,比f1*f2的float*float=float精度更高,所以f1 * f2 == f1 * 5.0不成立。

g.  f3 / f1 == 5.0     =》1,  左边float/foat=float,结果用float类型表示,小数位尾数为0,右边double类型的5.0的小数位尾数也都是0,所以f3 / f1 == 5.0 成立。可以结合下面的 i. 来理解。

h.  f3 / f1 == f2      =》1, 左边和右边都是float类型,精度不变,所以 f3 / f1 == f2成立。可以结合下面的j. 来理解。

补充:

i.  f3 / f2 == 1.4   =》0, 左边结果float类型,右边1.4是double类型,精度不同,所以f3 / f2 == 1.4不成立。

j. f3 / f2 == f1   =》1,右边类型是float,1.4用float表示,不涉及精度降低问题,所以f3 / f2 == f1 成立。

cout默认打印出7位有效数字,所以第一行打印的结果都一样。

上面的验证结果如图:

这篇关于c++单精度和双精度的运算例子(计算机占位存储)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/988580

相关文章

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

SpringBoot3.X 整合 MinIO 存储原生方案

《SpringBoot3.X整合MinIO存储原生方案》本文详细介绍了SpringBoot3.X整合MinIO的原生方案,从环境搭建到核心功能实现,涵盖了文件上传、下载、删除等常用操作,并补充了... 目录SpringBoot3.X整合MinIO存储原生方案:从环境搭建到实战开发一、前言:为什么选择MinI

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

C++中NULL与nullptr的区别小结

《C++中NULL与nullptr的区别小结》本文介绍了C++编程中NULL与nullptr的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编... 目录C++98空值——NULLC++11空值——nullptr区别对比示例 C++98空值——NUL

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os