推荐系统介绍:(协同过滤)—Intro to Recommender Systems: Collaborative Filtering

本文主要是介绍推荐系统介绍:(协同过滤)—Intro to Recommender Systems: Collaborative Filtering,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文试验前期准备:

  1. MovieLens  ml-100k数据集
  2. Jupyter notebook
  3. themoviedb.org API key

 本文试验内容翻译自:http://blog.ethanrosenthal.com/2015/11/02/intro-to-collaborative-filtering/

 

  1. 添加python引用
    import numpy as np
    import pandas as pd
  2. 进入MovieLens  ml-100k数据存放目录
    cd F:\Master\MachineLearning\kNN\ml-100k
  3. 读取数据:u.data每行数据分为userid,itemid,rating,时间戳四部分
    names = ['user_id', 'item_id', 'rating', 'timestamp']
    df = pd.read_csv('u.data', sep='\t', names=names)
    df.head()

     

     user_iditem_idratingtimestamp
    01962423881250949
    11863023891717742
    2223771878887116
    3244512880606923
    41663461886397596
  4. 统计文件中用户总数与电影总数
    n_users = df.user_id.unique().shape[0]
    n_items = df.item_id.unique().shape[0]
    print str(n_users) + ' users'
    print str(n_items) + ' items'
    943 users
    1682 items
  5. 构造 用户-电影评分矩阵
    ratings = np.zeros((n_users, n_items))
    for row in df.itertuples():ratings[row[1]-1, row[2]-1] = row[3]
    ratings
    array([[ 5.,  3.,  4., ...,  0.,  0.,  0.],[ 4.,  0.,  0., ...,  0.,  0.,  0.],[ 0.,  0.,  0., ...,  0.,  0.,  0.],..., [ 5.,  0.,  0., ...,  0.,  0.,  0.],[ 0.,  0.,  0., ...,  0.,  0.,  0.],[ 0.,  5.,  0., ...,  0.,  0.,  0.]])
  6. 计算数据稀疏度
    sparsity = float(len(ratings.nonzero()[0]))
    sparsity /= (ratings.shape[0] * ratings.shape[1])
    sparsity *= 100
    print 'Sparsity: {:4.2f}%'.format(sparsity)

    Sparsity: 6.30% 
    数据稀疏度:6.3%

  7.  数据稀疏度为6.3%,943个user,1682个item,每个用户平均需要做出100条评论,随机抽取10%数据,将数据分为训练集与测试机两部分
    def train_test_split(ratings):test = np.zeros(ratings.shape)train = ratings.copy()for user in xrange(ratings.shape[0]):test_ratings = np.random.choice(ratings[user, :].nonzero()[0], size=10, replace=False)train[user, test_ratings] = 0.test[user, test_ratings] = ratings[user, test_ratings]# Test and training are truly disjointassert(np.all((train * test) == 0)) return train, test
    train, test = train_test_split(ratings)

     

  8. 计算user或item的余弦相似性可以用代码通过for循环实现,但是这样Python代码会运行非常慢,这里可以使用NumPy的科学计算函数来表达方程式,提高计算速度
    def slow_similarity(ratings, kind='user'):if kind == 'user':axmax = 0axmin = 1elif kind == 'item':axmax = 1axmin = 0sim = np.zeros((ratings.shape[axmax], ratings.shape[axmax]))for u in xrange(ratings.shape[axmax]):for uprime in xrange(ratings.shape[axmax]):rui_sqrd = 0.ruprimei_sqrd = 0.for i in xrange(ratings.shape[axmin]):sim[u, uprime] = ratings[u, i] * ratings[uprime, i]rui_sqrd += ratings[u, i] ** 2ruprimei_sqrd += ratings[uprime, i] ** 2sim[u, uprime] /= rui_sqrd * ruprimei_sqrdreturn simdef fast_similarity(ratings, kind='user', epsilon=1e-9):# epsilon -> small number for handling dived-by-zero errorsif kind == 'user':sim = ratings.dot(ratings.T) + epsilonelif kind == 'item':sim = ratings.T.dot(ratings) + epsilonnorms = np.array([np.sqrt(np.diagonal(sim))])return (sim / norms / norms.T)
    %timeit fast_similarity(train, kind='user')
    1 loop, best of 3: 171 ms per loop
  9.  分别计算user相似性和item相似性,并输出item相似性矩阵的前4行

    user_similarity = fast_similarity(train, kind='user')
    item_similarity = fast_similarity(train, kind='item')
    print item_similarity[:4, :4]
    [[ 1.          0.42176871  0.3440934   0.4551558 ][ 0.42176871  1.          0.2889324   0.48827863][ 0.3440934   0.2889324   1.          0.33718518][ 0.4551558   0.48827863  0.33718518  1.        ]]
  10.  预测评分,predict_fast_simple使用NumPy数学函数,计算更块

    def predict_slow_simple(ratings, similarity, kind='user'):pred = np.zeros(ratings.shape)if kind == 'user':for i in xrange(ratings.shape[0]):for j in xrange(ratings.shape[1]):pred[i, j] = similarity[i, :].dot(ratings[:, j])\/np.sum(np.abs(similarity[i, :]))return predelif kind == 'item':for i in xrange(ratings.shape[0]):for j in xrange(ratings.shape[1]):pred[i, j] = similarity[j, :].dot(ratings[i, :].T)\/np.sum(np.abs(similarity[j, :]))return preddef predict_fast_simple(ratings, similarity, kind='user'):if kind == 'user':return similarity.dot(ratings) / np.array([np.abs(similarity).sum(axis=1)]).Telif kind == 'item':return ratings.dot(similarity) / np.array([np.abs(similarity).sum(axis=1)])
    %timeit predict_slow_simple(train, user_similarity, kind='user')
    1 loop, best of 3: 1min 52s per loop
    %timeit predict_fast_simple(train, user_similarity, kind='user')
    1 loop, best of 3: 279 ms per loop 
  11.  使用sklearn计算MSE,首先去除数据矩阵中的无效0值,然后直接调用sklearn里面的mean_squared_error函数计算MSE

    from sklearn.metrics import mean_squared_errordef get_mse(pred, actual):# Ignore nonzero terms.pred = pred[actual.nonzero()].flatten()actual = actual[actual.nonzero()].flatten()return mean_squared_error(pred, actual)
    item_prediction = predict_fast_simple(train, item_similarity, kind='item')
    user_prediction = predict_fast_simple(train, user_similarity, kind='user')print 'User-based CF MSE: ' + str(get_mse(user_prediction, test))
    print 'Item-based CF MSE: ' + str(get_mse(item_prediction, test))
    User-based CF MSE: 8.44170489251
    Item-based CF MSE: 11.5717812485
  12.  为提高预测的MSE,可以只考虑使用与目标用户最相似的k个用户的数据,进行Top-k预测并进行MSE计算

    def predict_topk(ratings, similarity, kind='user', k=40):pred = np.zeros(ratings.shape)if kind == 'user':for i in xrange(ratings.shape[0]):top_k_users = [np.argsort(similarity[:,i])[:-k-1:-1]]for j in xrange(ratings.shape[1]):pred[i, j] = similarity[i, :][top_k_users].dot(ratings[:, j][top_k_users]) pred[i, j] /= np.sum(np.abs(similarity[i, :][top_k_users]))if kind == 'item':for j in xrange(ratings.shape[1]):top_k_items = [np.argsort(similarity[:,j])[:-k-1:-1]]for i in xrange(ratings.shape[0]):pred[i, j] = similarity[j, :][top_k_items].dot(ratings[i, :][top_k_items].T) pred[i, j] /= np.sum(np.abs(similarity[j, :][top_k_items]))        return pred
    pred = predict_topk(train, user_similarity, kind='user', k=40)
    print 'Top-k User-based CF MSE: ' + str(get_mse(pred, test))pred = predict_topk(train, item_similarity, kind='item', k=40)
    print 'Top-k Item-based CF MSE: ' + str(get_mse(pred, test))

     

    计算结果为:

    Top-k User-based CF MSE: 6.47059807493
    Top-k Item-based CF MSE: 7.75559095568

    相比之前的方法,MSE已经降低了不少。

  13. 为进一步降低MSE,这里尝试使用不同的k值寻找最小的MSE,使用matplotlib 可视化输出结果
    k_array = [5, 15, 30, 50, 100, 200]
    user_train_mse = []
    user_test_mse = []
    item_test_mse = []
    item_train_mse = []def get_mse(pred, actual):pred = pred[actual.nonzero()].flatten()actual = actual[actual.nonzero()].flatten()return mean_squared_error(pred, actual)for k in k_array:user_pred = predict_topk(train, user_similarity, kind='user', k=k)item_pred = predict_topk(train, item_similarity, kind='item', k=k)user_train_mse += [get_mse(user_pred, train)]user_test_mse += [get_mse(user_pred, test)]item_train_mse += [get_mse(item_pred, train)]item_test_mse += [get_mse(item_pred, test)]  
    %matplotlib inline
    import matplotlib.pyplot as plt
    import seaborn as sns
    sns.set()pal = sns.color_palette("Set2", 2)plt.figure(figsize=(8, 8))
    plt.plot(k_array, user_train_mse, c=pal[0], label='User-based train', alpha=0.5, linewidth=5)
    plt.plot(k_array, user_test_mse, c=pal[0], label='User-based test', linewidth=5)
    plt.plot(k_array, item_train_mse, c=pal[1], label='Item-based train', alpha=0.5, linewidth=5)
    plt.plot(k_array, item_test_mse, c=pal[1], label='Item-based test', linewidth=5)
    plt.legend(loc='best', fontsize=20)
    plt.xticks(fontsize=16);
    plt.yticks(fontsize=16);
    plt.xlabel('k', fontsize=30);
    plt.ylabel('MSE', fontsize=30);

     

     
    从图中可以看出,在测试数据集中,k为15和50时分别产生一个最小值对基于用户和基于项目的协同过滤

     

  14.  计算无偏置下均方根误差MSE
    def predict_nobias(ratings, similarity, kind='user'):if kind == 'user':user_bias = ratings.mean(axis=1)ratings = (ratings - user_bias[:, np.newaxis]).copy()pred = similarity.dot(ratings) / np.array([np.abs(similarity).sum(axis=1)]).Tpred += user_bias[:, np.newaxis]elif kind == 'item':item_bias = ratings.mean(axis=0)ratings = (ratings - item_bias[np.newaxis, :]).copy()pred = ratings.dot(similarity) / np.array([np.abs(similarity).sum(axis=1)])pred += item_bias[np.newaxis, :]return pred

     

    user_pred = predict_nobias(train, user_similarity, kind='user')
    print 'Bias-subtracted User-based CF MSE: ' + str(get_mse(user_pred, test))item_pred = predict_nobias(train, item_similarity, kind='item')
    print 'Bias-subtracted Item-based CF MSE: ' + str(get_mse(item_pred, test))
    Bias-subtracted User-based CF MSE: 8.67647634245
    Bias-subtracted Item-based CF MSE: 9.71148412222



  15. 将Top-k和偏置消除算法结合起来,计算基于User的和基于Item的MSE,并分别取k=5,15,30,50,100,200,将计算的MSE结果运用matplotlib 可视化输出
    def predict_topk_nobias(ratings, similarity, kind='user', k=40):pred = np.zeros(ratings.shape)if kind == 'user':user_bias = ratings.mean(axis=1)ratings = (ratings - user_bias[:, np.newaxis]).copy()for i in xrange(ratings.shape[0]):top_k_users = [np.argsort(similarity[:,i])[:-k-1:-1]]for j in xrange(ratings.shape[1]):pred[i, j] = similarity[i, :][top_k_users].dot(ratings[:, j][top_k_users]) pred[i, j] /= np.sum(np.abs(similarity[i, :][top_k_users]))pred += user_bias[:, np.newaxis]if kind == 'item':item_bias = ratings.mean(axis=0)ratings = (ratings - item_bias[np.newaxis, :]).copy()for j in xrange(ratings.shape[1]):top_k_items = [np.argsort(similarity[:,j])[:-k-1:-1]]for i in xrange(ratings.shape[0]):pred[i, j] = similarity[j, :][top_k_items].dot(ratings[i, :][top_k_items].T) pred[i, j] /= np.sum(np.abs(similarity[j, :][top_k_items])) pred += item_bias[np.newaxis, :]return pred
    k_array = [5, 15, 30, 50, 100, 200]
    user_train_mse = []
    user_test_mse = []
    item_test_mse = []
    item_train_mse = []for k in k_array:user_pred = predict_topk_nobias(train, user_similarity, kind='user', k=k)item_pred = predict_topk_nobias(train, item_similarity, kind='item', k=k)user_train_mse += [get_mse(user_pred, train)]user_test_mse += [get_mse(user_pred, test)]item_train_mse += [get_mse(item_pred, train)]item_test_mse += [get_mse(item_pred, test)]  
    In [29]:
    pal = sns.color_palette("Set2", 2)plt.figure(figsize=(8, 8))
    plt.plot(k_array, user_train_mse, c=pal[0], label='User-based train', alpha=0.5, linewidth=5)
    plt.plot(k_array, user_test_mse, c=pal[0], label='User-based test', linewidth=5)
    plt.plot(k_array, item_train_mse, c=pal[1], label='Item-based train', alpha=0.5, linewidth=5)
    plt.plot(k_array, item_test_mse, c=pal[1], label='Item-based test', linewidth=5)
    plt.legend(loc='best', fontsize=20)
    plt.xticks(fontsize=16);
    plt.yticks(fontsize=16);
    plt.xlabel('k', fontsize=30);
    plt.ylabel('MSE', fontsize=30);



  16. 导入requests引用,通过requests.get方法获取链接地址
    import requests
    import jsonresponse = requests.get('http://us.imdb.com/M/title-exact?Toy%20Story%20(1995)')
    print response.url.split('/')[-2]
    Movie ID 输出结果:tt0114709
  17. 这里需要使用themoviedb的API,通过查询themoviedb.org的API获取指定movie id 的海报文件存放路径
    # Get base url filepath structure. w185 corresponds to size of movie poster.
    headers = {'Accept': 'application/json'}
    payload = {'api_key': '这里填入你的API'} 
    response = requests.get("http://api.themoviedb.org/3/configuration", params=payload, headers=headers)
    response = json.loads(response.text)
    base_url = response['images']['base_url'] + 'w185'def get_poster(imdb_url, base_url):# Get IMDB movie IDresponse = requests.get(imdb_url)movie_id = response.url.split('/')[-2]# Query themoviedb.org API for movie poster path.movie_url = 'http://api.themoviedb.org/3/movie/{:}/images'.format(movie_id)headers = {'Accept': 'application/json'}payload = {'api_key': '这里填入你的API'} response = requests.get(movie_url, params=payload, headers=headers)try:file_path = json.loads(response.text)['posters'][0]['file_path']except:# IMDB movie ID is sometimes no good. Need to get correct one.movie_title = imdb_url.split('?')[-1].split('(')[0]payload['query'] = movie_titleresponse = requests.get('http://api.themoviedb.org/3/search/movie', params=payload, headers=headers)movie_id = json.loads(response.text)['results'][0]['id']payload.pop('query', None)movie_url = 'http://api.themoviedb.org/3/movie/{:}/images'.format(movie_id)response = requests.get(movie_url, params=payload, headers=headers)file_path = json.loads(response.text)['posters'][0]['file_path']return base_url + file_path
    from IPython.display import Image
    from IPython.display import displaytoy_story = 'http://us.imdb.com/M/title-exact?Toy%20Story%20(1995)'
    Image(url=get_poster(toy_story, base_url))

     

    直接输出了电影的海报图片

     

  18. 加载MovieLens中u.data文件中的电影信息,根据给定的电影信息,计算最相似的k个电影,输出它们的海报

    # Load in movie data
    idx_to_movie = {}
    with open('u.item', 'r') as f:for line in f.readlines():info = line.split('|')idx_to_movie[int(info[0])-1] = info[4]def top_k_movies(similarity, mapper, movie_idx, k=6):return [mapper[x] for x in np.argsort(similarity[movie_idx,:])[:-k-1:-1]]
    idx = 0 # Toy Story
    movies = top_k_movies(item_similarity, idx_to_movie, idx)
    posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies)

     

    display(*posters)


  19. 输出id为1的电影(GoldenEye)的最相似的k(k默认为6)部电影海报
    idx = 1 # GoldenEye
    movies = top_k_movies(item_similarity, idx_to_movie, idx)
    posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies)
    display(*posters)

     

  20. 输出id为2的电影(Muppet Treasure Island)的最相似的k(k默认为6)部电影海报
    idx = 20 # Muppet Treasure Island
    movies = top_k_movies(item_similarity, idx_to_movie, idx)
    posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies)
    display(*posters)

     

  21. 输出id为20的电影(Muppet Treasure Island)的最相似的k(k默认为6)部电影海报
    idx = 20 # Muppet Treasure Island
    movies = top_k_movies(item_similarity, idx_to_movie, idx)
    posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies)
    display(*posters)

     

  22. 输出id为40的电影(Billy Madison)的最相似的k(k默认为6)部电影海报
    idx = 40 # Billy Madison
    movies = top_k_movies(item_similarity, idx_to_movie, idx)
    posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies)
    display(*posters)
  23. 有时候现在这个的推荐结果似乎并不总是很好,Star Wars最相似的电影是Toy Story?Star Wars这类很受欢迎的电影在系统中预测评分很高,可以考虑运用一个不同的相似度度量方法——pearson相关度来移除一些偏置
    from sklearn.metrics import pairwise_distances
    # Convert from distance to similarity
    item_correlation = 1 - pairwise_distances(train.T, metric='correlation')
    item_correlation[np.isnan(item_correlation)] = 0.

     

  24. 再此分别对id为0,1,20,40的电影进行最相似的k部电影预测
    idx = 0 # Toy Story
    movies = top_k_movies(item_correlation, idx_to_movie, idx)
    posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies)
    display(*posters)
    idx = 1 # GoldenEye
    movies = top_k_movies(item_correlation, idx_to_movie, idx)
    posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies)
    display(*posters)
    idx = 20 # Muppet Treasure Island
    movies = top_k_movies(item_correlation, idx_to_movie, idx)
    posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies)
    display(*posters)
    idx = 40 # Billy Madison
    movies = top_k_movies(item_correlation, idx_to_movie, idx)
    posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies)
    display(*posters)

     

 

sim(u,u)=cos(θ)=ru˙rururu=iruiruiir2uiir2ui

这篇关于推荐系统介绍:(协同过滤)—Intro to Recommender Systems: Collaborative Filtering的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/987936

相关文章

JWT + 拦截器实现无状态登录系统

《JWT+拦截器实现无状态登录系统》JWT(JSONWebToken)提供了一种无状态的解决方案:用户登录后,服务器返回一个Token,后续请求携带该Token即可完成身份验证,无需服务器存储会话... 目录✅ 引言 一、JWT 是什么? 二、技术选型 三、项目结构 四、核心代码实现4.1 添加依赖(pom

Java中HashMap的用法详细介绍

《Java中HashMap的用法详细介绍》JavaHashMap是一种高效的数据结构,用于存储键值对,它是基于哈希表实现的,提供快速的插入、删除和查找操作,:本文主要介绍Java中HashMap... 目录一.HashMap1.基本概念2.底层数据结构:3.HashCode和equals方法为什么重写Has

基于Python实现自动化邮件发送系统的完整指南

《基于Python实现自动化邮件发送系统的完整指南》在现代软件开发和自动化流程中,邮件通知是一个常见且实用的功能,无论是用于发送报告、告警信息还是用户提醒,通过Python实现自动化的邮件发送功能都能... 目录一、前言:二、项目概述三、配置文件 `.env` 解析四、代码结构解析1. 导入模块2. 加载环

linux系统上安装JDK8全过程

《linux系统上安装JDK8全过程》文章介绍安装JDK的必要性及Linux下JDK8的安装步骤,包括卸载旧版本、下载解压、配置环境变量等,强调开发需JDK,运行可选JRE,现JDK已集成JRE... 目录为什么要安装jdk?1.查看linux系统是否有自带的jdk:2.下载jdk压缩包2.解压3.配置环境

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

Linux查询服务器系统版本号的多种方法

《Linux查询服务器系统版本号的多种方法》在Linux系统管理和维护工作中,了解当前操作系统的版本信息是最基础也是最重要的操作之一,系统版本不仅关系到软件兼容性、安全更新策略,还直接影响到故障排查和... 目录一、引言:系统版本查询的重要性二、基础命令解析:cat /etc/Centos-release详

更改linux系统的默认Python版本方式

《更改linux系统的默认Python版本方式》通过删除原Python软链接并创建指向python3.6的新链接,可切换系统默认Python版本,需注意版本冲突、环境混乱及维护问题,建议使用pyenv... 目录更改系统的默认python版本软链接软链接的特点创建软链接的命令使用场景注意事项总结更改系统的默

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.

在Linux系统上连接GitHub的方法步骤(适用2025年)

《在Linux系统上连接GitHub的方法步骤(适用2025年)》在2025年,使用Linux系统连接GitHub的推荐方式是通过SSH(SecureShell)协议进行身份验证,这种方式不仅安全,还... 目录步骤一:检查并安装 Git步骤二:生成 SSH 密钥步骤三:将 SSH 公钥添加到 github

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1