基于MetaGPT的智能体理论与实践-Task01

2024-05-14 02:12

本文主要是介绍基于MetaGPT的智能体理论与实践-Task01,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Task01:  MetaGPT环境配置

学习教程:https://github.com/datawhalechina/hugging-multi-agent

1  环境准备

1.1  安装python3.9+

通过:python3 --version, 查看此python版本为3.10.3

1.2  下载MetaGPT

开始,借用清华镜像,拉取metagpt==0.6.6,失败。

 然后直接用pip install metagpt==0.6.6 进行下载与安装。

 1.3  获取MetaGPT仓库源码

首先git clone命令获取源码

git clone https://github.com/geekan/MetaGPT.git

 然后进入 MetaGPT 目录

cd MetaGPT/

最后安装该仓库环境依赖

pip install -e .

 2   配置MetaGPT

下面使用ZHIPUAI为例,来MetaGPT

首先,需要在https://open.bigmodel.cn/  获取智谱的api_key。

然后使用config.yaml文件进行配置。

在MetaGPT/config/ 文件下,创建config.yaml文件,然后在文件中,添加如下配置信息。

llm:api_type: "zhipuai"  model: "glm-3-turbo"  base_url: "https://open.bigmodel.cn/api/paas/v4/chat/completions"  api_key: "your api_key"

3   DEMO测试 

异步相关的代码在ipython或者notebook环境下,asyncio.run(xxx)得改成await xxx

eg:asyncio.run(main())需要改成await main() 

代码中创建了两个角色,分别代表民主党候选人Alex和共和党候选人Bob。他们将在一个名为"US election live broadcast"的环境中进行对话。您的代码还定义了两个动作,分别是"AlexSay"和"BobSay",以及一个团队,其中包括了这两个角色。目标是模拟两位候选人在直播环境中就气候变化这一话题进行对话。这将有助于模拟候选人在现实选举中的表现和对话。 

import asynciofrom metagpt.actions import Action
from metagpt.environment import Environment
from metagpt.roles import Role
from metagpt.team import Teamaction1 = Action(name="AlexSay", instruction="Express your opinion with emotion and don't repeat it")
action2 = Action(name="BobSay", instruction="Express your opinion with emotion and don't repeat it")
alex = Role(name="Alex", profile="Democratic candidate", goal="Win the election", actions=[action1], watch=[action2])
bob = Role(name="Bob", profile="Republican candidate", goal="Win the election", actions=[action2], watch=[action1])
env = Environment(desc="US election live broadcast")
team = Team(investment=10.0, env=env, roles=[alex, bob])asyncio.run(team.run(idea="Topic: climate change. Under 80 words per message.", send_to="Alex", n_round=5))

由于,这里使用的notebook,所以把上面代码最后一行改成:

await team.run(idea="Topic: climate change. Under 80 words per message.", send_to="Alex", n_round=5)

 

 

这篇关于基于MetaGPT的智能体理论与实践-Task01的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/987467

相关文章

Spring WebFlux 与 WebClient 使用指南及最佳实践

《SpringWebFlux与WebClient使用指南及最佳实践》WebClient是SpringWebFlux模块提供的非阻塞、响应式HTTP客户端,基于ProjectReactor实现,... 目录Spring WebFlux 与 WebClient 使用指南1. WebClient 概述2. 核心依

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

MySQL 用户创建与授权最佳实践

《MySQL用户创建与授权最佳实践》在MySQL中,用户管理和权限控制是数据库安全的重要组成部分,下面详细介绍如何在MySQL中创建用户并授予适当的权限,感兴趣的朋友跟随小编一起看看吧... 目录mysql 用户创建与授权详解一、MySQL用户管理基础1. 用户账户组成2. 查看现有用户二、创建用户1. 基

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

springboot项目中整合高德地图的实践

《springboot项目中整合高德地图的实践》:本文主要介绍springboot项目中整合高德地图的实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一:高德开放平台的使用二:创建数据库(我是用的是mysql)三:Springboot所需的依赖(根据你的需求再