SeetaFace6人脸活体检测C++代码实现Demo

2024-05-13 06:44

本文主要是介绍SeetaFace6人脸活体检测C++代码实现Demo,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        SeetaFace6包含人脸识别的基本能力:人脸检测、关键点定位、人脸识别,同时增加了活体检测、质量评估、年龄性别估计,并且顺应实际应用需求,开放口罩检测以及口罩佩戴场景下的人脸识别模型。

        官网地址:https://github.com/SeetaFace6Open/index

1. 概述

        活体检测是判断人脸图像是来自真人还是来自攻击假体(照片、视频等)的方法。

        人脸识别系统存在被伪造攻击的风险。因此需要在人脸识别系统中加入活体检测,验证用户是否为真实活体本人操作,以防止照片、视频、以及三维模型的入侵,从而帮助用户甄别欺诈行为,保障用户的利益。

        活体检测分为静默活体检测和配合式活体检测。配合式活体检测即“张张嘴”、“眨眨眼”、“摇摇头”之类;多应用于APP刷脸登录、注册等。静默活体检测是不需要任何动作配合,通过算法和摄像头的配合,进行活体判定;使用起来非常方便,用户在无感的情况下就可以通过检测比对,效率非常高。

    《GB∕T 41772-2022 信息技术 生物特征识别 人脸识别系统技术要求》给出了假体攻击类型包括不限于二维假体攻击和三维假体攻击,如下表所示。

二维假体攻击

二维静态纸张图像攻击

样本材质

打印纸、亚光相纸、高光相纸、绒面相纸、哑粉纸、铜版纸等

样本质量

分辨率、清晰度、大小、角度、光照条件、完整度等

呈现方式

距离、角度、移动、弯曲、折叠等

裁剪方式

图像是否扣除眼部、鼻子、嘴巴等

二维静态电子图像攻击

设备类型

移动终端、微型计算机等

设备显示性能

分辨率、亮度、对比度等

样本质量

分辨率、清晰度、大小、角度、光照条件、完整度等

呈现方式

距离、角度、移动等

二维动态图像攻击

图像类型

录制视频、合成视频等

设备类型

移动终端、微型计算机等

设备显示性能

分辨率、亮度、对比度等

图像质量

分辨率、清晰度、帧率等

呈现方式

距离、角度、移动等

三维假体攻击

三维面具攻击

面具材质

塑料面具、三维纸张面具、硅胶面具等

呈现方式

距离、角度、移动等

光线条件

正常光、强光、弱光、逆光等

裁剪方式

面具是否扣除眼部、鼻子、嘴巴等

三维头模攻击

头模材质

泡沫、树脂、全彩砂岩、石英砂等

呈现方式

距离、角度、移动等

光线条件

正常光、强光、弱光、逆光等

2. SeetaFace6活体检测

        SeetaFace6的活体检测方案,提供了全局活体检测和局部活体检测 两个方法。

  • 全局活体检测就是对图片整体做检测,主要是判断是否出现了活体检测潜在的攻击介质,如手机、平板、照片等等。
  • 局部活体检测是对具体人脸的成像细节通过算法分析,区别是一次成像和二次成像,如果是二次成像则认为是出现了攻击。

2.1 基本使用

        活体检测识别器可以加载一个局部检测模型或者局部检测模型+全局检测模型。

        只加载一个局部检测模型:

#include <seeta/FaceAntiSpoofing.h>
seeta::FaceAntiSpoofing *new_fas() {seeta::ModelSetting setting;setting.append("fas_first.csta");return new seeta::FaceAntiSpoofing(setting);
}

        或者局部检测模型+全局检测模型,启用全局检测能力:

#include <seeta/FaceAntiSpoofing.h>
seeta::FaceAntiSpoofing *new_fas_v2() {seeta::ModelSetting setting;setting.append("fas_first.csta");setting.append("fas_second.csta");return new seeta::FaceAntiSpoofing(setting);
}

        调用有两种模式,一个是单帧识别,另外就是视频识别。 其接口声明分别为:

seeta::FaceAntiSpoofing::Status seeta::FaceAntiSpoofing::Predict( const SeetaImageData &image, const SeetaRect &face, const SeetaPointF *points ) const;
seeta::FaceAntiSpoofing::Status seeta::FaceAntiSpoofing::PredictVideo( const SeetaImageData &image, const SeetaRect &face, const SeetaPointF *points ) const;

        从接口上两者的入参和出参的形式是一样的。出参这里列一下它的声明:

class FaceAntiSpoofing {
public:/*     * 活体识别状态     */enum Status{REAL = 0,       ///< 真实人脸SPOOF = 1,      ///< 攻击人脸(假人脸)FUZZY = 2,      ///< 无法判断(人脸成像质量不好)DETECTING = 3,  ///< 正在检测};
}

        单帧识别返回值会是REAL、SPOOF或FUZZY。 视频识别返回值会是REAL、SPOOF、FUZZY或DETECTING。

        两种工作模式的区别在于前者属于一帧就是可以返回识别结果,而后者要输入多个视频帧然后返回识别结果。在视频识别输入帧数不满足需求的时候,返回状态就是DETECTING。

        这里给出单帧识别调用的示例:

void predict(seeta::FaceAntiSpoofing *fas, const SeetaImageData &image, const SeetaRect &face, const SeetaPointF *points) {auto status = fas->Predict(image, face, points);switch(status) {case seeta::FaceAntiSpoofing::REAL:std::cout << "真实人脸" << std::endl; break;case seeta::FaceAntiSpoofing::SPOOF:std::cout << "攻击人脸" << std::endl; break;case seeta::FaceAntiSpoofing::FUZZY:std::cout << "无法判断" << std::endl; break;case seeta::FaceAntiSpoofing::DETECTING:std::cout << "正在检测" << std::endl; break;}
}

        这里需要注意face和points必须对应,也就是points必须是face表示的人脸进行关键点定位的结果。points是5个关键点。当然image也是需要识别的原图。

        如果是视频识别模式的话,只需要将predict中的fas->Predict(image, face, points)修改为fas->PredictVideo(image, face, points)。

        在视频识别模式中,如果该识别结果已经完成,需要开始新的视频的话,需要调用ResetVideo重置识别状态,然后重新输入视频:

void reset_video(seeta::FaceAntiSpoofing *fas) {fas->ResetVideo();
}

        当了解基本调用接口之后,就可以直接看出来,识别接口直接输入的就是单个人脸位置和关键点。因此,当视频或者图片中存在多张人脸的时候,需要业务决定具体识别哪一个人脸。一般有这几种选择,1. 只做单人识别,当出现两个人的时候识别中止。2. 识别最大的人脸。3. 识别在指定区域中出现的人脸。这几种选择对精度本身影响不大,主要是业务选型和使用体验的区别。

2.2 参数设置

        设置视频帧数:

void SetVideoFrameCount( int32_t number );

        默认为10,当在PredictVideo模式下,输出帧数超过这个number之后,就可以输出识别结果。这个数量相当于多帧识别结果融合的融合的帧数。当输入的帧数超过设定帧数的时候,会采用滑动窗口的方式,返回融合的最近输入的帧融合的识别结果。一般来说,在10以内,帧数越多,结果越稳定,相对性能越好,但是得到结果的延时越高。

        设置识别阈值:

void SetThreshold( float clarity, float reality );

        默认为(0.3, 0.8)。活体识别时,如果清晰度(clarity)低的话,就会直接返回FUZZY。清晰度满足阈值,则判断真实度(reality),超过阈值则认为是真人,低于阈值是攻击。在视频识别模式下,会计算视频帧数内的平均值再跟帧数比较。两个阈值都符合,越高的话,越是严格。

        设置全局检测阈值:

void SetBoxThresh(float box_thresh);

        默认为0.8,这个是攻击介质存在的分数阈值,该阈值越高,表示对攻击介质的要求越严格,一般的疑似就不会认为是攻击介质。这个一般不进行调整。

        以上参数设置都存在对应的Getter方法,将方法名称中的Set改为Get就可以访问对应的参数获取了。

2.3 参数调试

        在应用过程中往往不可避免对阈值产生疑问,如果要调试对应的识别的阈值,这里我们给出了每一帧分数的获取函数。

        下面给出识别之后获取识别具体分数的方法:

void predict_log(seeta::FaceAntiSpoofing *fas, const SeetaImageData &image, const SeetaRect &face, const SeetaPointF *points) {auto status = fas->Predict(image, face, points);float clarity, reality;fas->GetPreFrameScore(&clarity, &reality);std::cout << "clarity = " << clarity << ", reality = " << reality << std::endl;
}

        在Predict或者PredictVideo之后,调用GetPreFrameScore方法可以获取刚刚输入帧的识别分数。

3. 演示Demo

3.1 开发环境

  • Windows 10 Pro x64
  • Visual Studio 2015
  • Seetaface6

3.2 功能介绍

        演示程序主界面如下图所示,包括参数显示、实时活体检测、取消等功能。

3.3 效果测试

        二维假体攻击,包括二维静态纸张图像攻击、二维静态电子图像攻击、二维动态图像攻击,检测效果还是不错。

        三维假体攻击,除了塑料材质检测效果还可以,其他材质基本无法正确检测。

3.4 下载地址

        开发环境:

  • Windows 10 pro x64
  • Visual Studio 2015
  • Seetaface6

        VS工程下载:SeetaFace6人脸活体检测C++代码实现Demo

这篇关于SeetaFace6人脸活体检测C++代码实现Demo的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/984968

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S