Pytorch基础:环境变量CUDA_VISIBLE_DEVICES

2024-05-13 06:04

本文主要是介绍Pytorch基础:环境变量CUDA_VISIBLE_DEVICES,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相关阅读

Pytorch基础icon-default.png?t=N7T8https://blog.csdn.net/weixin_45791458/category_12457644.html?spm=1001.2014.3001.5482


        CUDA_VISIBLE_DEVICES这个环境变量可以影响CUDA能识别到的GPU,并影响它映射到的cuda设备编号。

        首先我们知道使用nvidia-smi命令可以查询本机GPU的相关信息,如下所示。

$ nvidia-smi
Sun May 12 22:13:43 2024       
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.161.07             Driver Version: 535.161.07   CUDA Version: 12.2     |
|-----------------------------------------+----------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |
|                                         |                      |               MIG M. |
|=========================================+======================+======================|
|   0  Tesla P100-PCIE-16GB           Off | 00000000:02:00.0 Off |                    0 |
| N/A   44C    P0              79W / 250W |  12178MiB / 16384MiB |     42%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   1  Tesla P100-PCIE-16GB           Off | 00000000:03:00.0 Off |                    0 |
| N/A   49C    P0              81W / 250W |  12214MiB / 16384MiB |     63%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   2  Tesla P100-PCIE-16GB           Off | 00000000:82:00.0 Off |                    0 |
| N/A   35C    P0              31W / 250W |   2932MiB / 16384MiB |      0%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+

        可以看到我的主机有三个GPU,分别被编号为0、1、2。在下面的python代码中,我们使用pytorch.cuda模块下提供的函数,查询了本机拥有的cuda设备数量,并根据编号显示了它们的型号。

import torch# 检查是否有可用的CUDA设备
if torch.cuda.is_available():# 获取设备数量device_count = torch.cuda.device_count()print("CUDA设备数量:", device_count)# 遍历每个设备并输出型号for i in range(device_count):print("CUDA设备{}型号:".format(i), torch.cuda.get_device_name(i))
else:print("CUDA不可用")
输出:
CUDA设备数量: 3
CUDA设备0型号: Tesla P100-PCIE-16GB
CUDA设备1型号: Tesla P100-PCIE-16GB
CUDA设备2型号: Tesla P100-PCIE-16GB

        上面的cuda设备编号,就对应着nvidia-smi命令所查询到的GPU编号,下面所示的几种方式可以将张量在指定编号的cuda设备之间转移,其中cuda:0、cuda:1、cuda:2中的数字指的就是cuda设备的编号。

import torchtensor_1=torch.tensor([1,2,3,4,5], device='cpu')
print(tensor_1)tensor_1=tensor_1.to('cuda:0')
print(tensor_1)
tensor_1=tensor_1.to('cuda:1')
print(tensor_1)
tensor_1=tensor_1.to('cuda:2')
print(tensor_1)tensor_2=torch.tensor([11,22,33,44,55], device='cpu')
print(tensor_2)tensor_2=tensor_2.to('cuda:0')
print(tensor_2)
tensor_2=tensor_2.to('cuda:1')
print(tensor_2)
tensor_2=tensor_2.to('cuda:2')
print(tensor_2)tensor_3=torch.tensor([111,222,333,444,555], device='cpu')
print(tensor_3)device_0=torch.device('cuda:0')
tensor_3=tensor_3.to(device_0)
print(tensor_3)
device_1=torch.device('cuda:1')
tensor_3=tensor_3.to(device_1)
print(tensor_3) 
device_2=torch.device('cuda:2')
tensor_3=tensor_3.to(device_2)
print(tensor_3)
输出:
tensor([1, 2, 3, 4, 5])
tensor([1, 2, 3, 4, 5], device='cuda:0')
tensor([1, 2, 3, 4, 5], device='cuda:1')
tensor([1, 2, 3, 4, 5], device='cuda:2')
tensor([11, 22, 33, 44, 55])
tensor([11, 22, 33, 44, 55], device='cuda:0')
tensor([11, 22, 33, 44, 55], device='cuda:1')
tensor([11, 22, 33, 44, 55], device='cuda:2')
tensor([111, 222, 333, 444, 555])
tensor([111, 222, 333, 444, 555], device='cuda:0')
tensor([111, 222, 333, 444, 555], device='cuda:1')
tensor([111, 222, 333, 444, 555], device='cuda:2')

        有了上面的基础,下面来谈谈环境变量CUDA_VISIBLE_DEVICES,在一般情况下,它是没有定义的,可以使用下面的Python代码进行检测。

import os
print(os.environ["CUDA_VISIBLE_DEVICES"])
输出:
KeyError: 'CUDA_VISIBLE_DEVICES'

        可以在Bash中使用export命令,定义环境变量CUDA_VISIBLE_DEVICES(设置变量为导出状态),有关export命令的内容,可以查看Linux:导出环境变量命令export。这种情况下,在该Bash下运行的所有python子进程,都会继承这个环境变量,如下所示。

# 以下三种方式均可以成功设置
# 仅设置GPU1、GPU2可见,且将GPU1当做cuda0设备,GPU2当做cuda1设备
$ export CUDA_VISIBLE_DEVICES='1,2'  
$ export CUDA_VISIBLE_DEVICES="1,2"
$ export CUDA_VISIBLE_DEVICES=1,2$ export  # 查看是否成功设置环境变量
******
declare -x CUDA_VISIBLE_DEVICES="1,2" 
******$ python
Python 3.9.18 (main, Sep 11 2023, 13:41:44) 
[GCC 11.2.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> print(os.environ["CUDA_VISIBLE_DEVICES"])
1,2
>>> import torch
>>> print("CUDA设备数量:", torch.cuda.device_count()) # 查看cuda设备数量
>>> CUDA设备数量: 2
>>> a=torch.tensor([1, 2, 3, 4, 5], device='cuda:2') # 无法使用cuda2设备
RuntimeError: CUDA error: invalid device ordinal
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

        上例展示了,如何仅设置GPU1和GPU2可见,且将GPU1当做cuda0设备,GPU2当做cuda1设备,所以此时无法使用cuda2设备。由于环境变量CUDA_VISIBLE_DEVICES中编号的顺序也会影响cuda设备的映射编号,我们甚至可以将GPU0当做cuda2设备,GPU1当做cuda1设备,GPU2当做cuda0设备,如下所示。

$ export CUDA_VISIBLE_DEVICES='2,1,0'  

        还可以在python内部使用os模块直接设置本python进程的环境变量,如下所示。

import os
import torch
os.environ["CUDA_VISIBLE_DEVICES"]='2'  # 注意:这里必须使用字符串
print(os.environ["CUDA_VISIBLE_DEVICES"])
print("CUDA设备数量:", torch.cuda.device_count()) # 查看cuda设备数量
a=torch.tensor([1, 2, 3, 4, 5], device='cuda:1') # 无法使用cuda1设备输出:
2
CUDA设备数量: 1
RuntimeError: CUDA error: invalid device ordinal
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

 

 

 

这篇关于Pytorch基础:环境变量CUDA_VISIBLE_DEVICES的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/984870

相关文章

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

MySQL数据类型与表操作全指南( 从基础到高级实践)

《MySQL数据类型与表操作全指南(从基础到高级实践)》本文详解MySQL数据类型分类(数值、日期/时间、字符串)及表操作(创建、修改、维护),涵盖优化技巧如数据类型选择、备份、分区,强调规范设计与... 目录mysql数据类型详解数值类型日期时间类型字符串类型表操作全解析创建表修改表结构添加列修改列删除列

Python 函数详解:从基础语法到高级使用技巧

《Python函数详解:从基础语法到高级使用技巧》本文基于实例代码,全面讲解Python函数的定义、参数传递、变量作用域及类型标注等知识点,帮助初学者快速掌握函数的使用技巧,感兴趣的朋友跟随小编一起... 目录一、函数的基本概念与作用二、函数的定义与调用1. 无参函数2. 带参函数3. 带返回值的函数4.

Win10安装Maven与环境变量配置过程

《Win10安装Maven与环境变量配置过程》本文介绍Maven的安装与配置方法,涵盖下载、环境变量设置、本地仓库及镜像配置,指导如何在IDEA中正确配置Maven,适用于Java及其他语言项目的构建... 目录Maven 是什么?一、下载二、安装三、配置环境四、验证测试五、配置本地仓库六、配置国内镜像地址

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统