局部敏感哈希LSH,即matlab代码

2024-05-13 03:32

本文主要是介绍局部敏感哈希LSH,即matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转自:http://blog.csdn.net/dudubird90/article/details/50907641


很早就想写一篇关于LSH的文章,后来发现前辈们已经写好了,容我这里再推荐一下该文。 
Locality Sensitive Hashing(LSH)之随机投影法 
http://www.strongczq.com/2012/04/locality-sensitive-hashinglsh%E4%B9%8B%E9%9A%8F%E6%9C%BA%E6%8A%95%E5%BD%B1%E6%B3%95.html

个人总结:这篇文章介绍了局部敏感哈希算法,局部敏感哈希是非监督的哈希算法。 
算法的输入是实数域的特征向量,输出为一个binary vector。 
利用哈希函数将数据点映射到不同的桶中是一种保形映射,使得数据点  i  和数据点  j  在原始空间的相似度  s  与映射后的在同一个桶的概率呈现正相关。之所以这么做,主要是避免exhausted search. 如果理想状态,每个桶中的元素数目大致相同,那么查询时的运算量将从原来的数据样本数目 m 个降低到 m/k 个,其中 k 为桶的数目。 
由于输出是二值向量,设其长度为 L ,每个哈希值其实对应着一个桶,理想情况下每个桶中都有数据, k=2L 。 
从原理上来说,代码实现是很简单的,matlab的版本的代码可见http://ttic.uchicago.edu/~gregory/download.html 
这其实是一个比较完整的工具包

本文主要做关键部分的代码解析。

入口函数lsh

T1=lsh('lsh',20,24,size(patches,1),patches,'range',255);
  • 1
  • 1

第一个参数是使用的算法的类型,包括两种类型,分别是lsh和e2lsh 
生成一个range的参数,得到的[0 0 ,…0; 255 255 ,….,255]这样的形式

range = processRange(d,range);
  • 1
  • 1

这个函数是用来产生lsh函数的。

Is = lshfunc(type,l,k,d,varargin{:});
  • 1
  • 1

l表示函数的个数,k表示一个函数中的位数,d表示数据的维度。

   for j=1:l% select random dimensionsI(j).d = include(unidrnd(length(include),1,k)); % 均匀分布的,随机选中k维% for each dimension select a threshold% hash key = [[ x(:,d)' >= t ]]t = unifrnd(0,1,1,k).*(range(2,I(j).d)-range(1,I(j).d)); %每一维都随机选中一个阈值位于0~255之间I(j).t = range(1,I(j).d)+t;I(j).k = k;end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

这里hash函数就是一个简单 阈值函数,将原始的400维的数据,随机选出k=24维,变为0到1,后文会有进一步说明。l为总共生成的哈希函数的数目,这里取值为20。 
产生Is的变量的内容如下: 
这里写图片描述 
d是选择的维度下标,t是维度的阈值。

T = lshprep(type,Is,b);
  • 1
  • 1

T这个变量存储了哈希查找哈希值以及索引信息。

  T(j).type = type;T(j).Args = varargin;T(j).I = Is(j);T(j).B = B;T(j).count = 0;T(j).buckets = [];% prepare T's tableT(j).Index = {};T(j).verbose=1;% set up secondary hash table for buckets% max. index can be obtained by running lshhash on max. bucketT(j).bhash = cell(lshhash(ones(1,k)*255),1); % lshhash是一个计算hash值的函数,将24维的二值向量映射为一个哈希值
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

随后的函数,将数据放入桶中,对T中变量进行赋值。

  T = lshins(T,x,ind);
  • 1
  • 1

这个函数中有一些关键的处理,其中

  buck = findbucket(T(j).type,x,T(j).I);%这是一个将数据转化为二值向量的函数
  • 1
  • 1

它里面的主要采用了矩阵的比较,本质上就是用刚才生成的阈值函数做了一个二值化。 
其中v是一个59500*24维的二值矩阵,每一行表示一个数据样本。

 v = x(I.d,:)' <= repmat(I.t,size(x,2),1);v = uint8(v+128);
  • 1
  • 2
  • 1
  • 2

但注意,输出的d维二值向量每一维并不是[0, 1],而在区间[128 129],这可能是要用于后文二次哈希的计算方便。为了后文方便说明,我们用哈希向量来简称这个二值向量。

这里一个桶buck对应着一个哈希向量,但是桶的数目非常多,直接来进行比较是很费时间的。

  [uniqBuck,ib,bID] = unique(buck,'rows');keys = lshhash(uniqBuck);%返回每个桶的哈希key
  • 1
  • 2
  • 1
  • 2

例如,对j=1这个哈希函数而言,总共有14615个不同的桶(新分配空间为14615*24),如果要查找一个桶就需要14615次比较非常费时。作者的优化方案是进行二次哈希,让多个哈希向量映射为一个整型的hash-key值,用lshhash函数完成此功能。

  % allocate space for new buckets -- possibly excessiveT(j).buckets=[T(j).buckets; zeros(length(ib),T(j).I.k,'uint8')];
  • 1
  • 2
  • 1
  • 2

对每一个单独的哈希key值ib(b)

    % find which data go to bucket uniqBuck(b)thisBucket = find(bID==bID(ib(b)));% find out if this bucket already has anything% first, which bucket is it? 该hash函数T(j)下的,对应于哈希key值keys(b)的桶是否已经存在ihash = T(j).bhash{keys(b)}; % possible matching bucketsif (isempty(ihash)) % nothing matchesisb = [];else % may or may not matchisb = ihash(find(all(bsxfun(@eq,uniqBuck(b,:),T(j).buckets(ihash,:)),2)));end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

其中

      isb = ihash(find(all(bsxfun(@eq,uniqBuck(b,:),T(j).buckets(ihash,:)),2)));
  • 1
  • 1

是一种非常有效的写法,bsxfun(@eq ,a,b)这种形式会得到两个向量之间的逐位比较,它matlab内部的实现是通过循环来实现的。通过all在水平方向上进行判别,就相当于比较两个向量是否相等。这一步是比较在T(j).bhash中存放的哈希向量中是否已经存在当前的获得的哈希向量,即是否已经记录了当前的桶,这样我们就可以分情况讨论是往这个桶里添加新的数据,还是要先创建一个桶再添加新的数据。

  if (~isempty(isb)) % 如果isb不为空,那么即该bucket已经存在% adding to an existing bucket.oldcount=length(T(j).Index{isb}); % # elements in the bucket prior% to addition 添加前桶中元素的数目,主要是方便统计newIndex = [T(j).Index{isb}  ind(thisBucket)];else% creating new bucketnewBuckets=newBuckets+1;oldcount=0;isb = oldBuckets+newBuckets;T(j).buckets(isb,:)=uniqBuck(b,:);%为什么用128 129表示T(j).bhash{keys(b)} = [T(j).bhash{keys(b)}; isb];%根据hash-key值来映射桶序号newIndex = ind(thisBucket);%该桶中存放的元素的下标end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

随后完成信息的更新

    % if there is a bound on bucket capacity, and the bucket is full,% keep a random subset of B elements (note: we do this rather than% simply skip the new elements since that could introduce bias% towards older elements.)% There is still a bias since older elements have more chances to get% thrown out.if (length(newIndex) > T(j).B)rp=randperm(length(newIndex));newIndex = newIndex(rp(1:T(j).B));% 如果超过的了桶的容量限制,那么随机选定T(j).B个数据end% ready to put this into the tableT(j).Index{isb}= newIndex;%重新为属于该桶的数据下标赋值% update distinct element countT(j).count = T(j).count + length(newIndex)-oldcount;%新数目减去老数目为改变量,注意如果以前桶中有元素,是通过追加的方式添加上去的,在追加后再与T(j).B进行比较。作者这么做,就是为了保证桶中元素不会因为满了而倾向于保持老元素,新元素就加不进去了,所以先追加后然后再随机选择指定数目保留下来。当然这样做还是会造成桶中旧的元素更容易被扔掉这一情形。
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

运行分析

运行lsh函数会得到:

Table 5 adding 13852 buckets (now 13852)
Table 5: 59500 elements
12619 distinct buckets
Table 6 adding 12619 buckets (now 12619)
Table 6: 59500 elements
11936 distinct buckets
Table 7 adding 11936 buckets (now 11936)
Table 7: 59500 elements
15997 distinct buckets
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

参数查看 lshstats

examine statistics of LSH data structure

[mi,ma,me]=lshstats(T,B,xref,xtst,minNN)
  • 1
  • 1

例如;

lshstats(T1(1:5),'test',patches,patches(:,1:1000),2);
  • 1
  • 1

输出为 
Table 1: 59500 in 13404 bkts, med 1, max 4288, avg 813.19 
Table 2: 59500 in 12661 bkts, med 1, max 2646, avg 544.55 
Table 3: 59500 in 16147 bkts, med 1, max 4057, avg 751.01 
Table 4: 59500 in 11627 bkts, med 1, max 4989, avg 864.60 
Table 5: 59500 in 13630 bkts, med 1, max 3528, avg 601.55

这表示table1有13404 个桶,平均容量是每个桶1个数据,最大容量为4288,期望容量为813.19

Running test…10% 20% 30% 40% 50% 60% 70% 80% 90% 100%  
# of comparisons: mean 980.14, max 8122, failures: 54

这里使用了5个哈希函数,它的含义是对前1000个样本进行查找,平均每次查找需要比较980个样本,但是同时失败次数为54次

如果增加哈希函数的数目,会得到不同的结果,根据参考文献中的分析,如果增加哈希函数的数目,那么会需要更长的查找时间,但是同时recall将会增加,例如这里我们用全部的20个哈希函数来做实验。

 lshstats(T1,'test',patches,patches(:,1:1000),2);
  • 1
  • 1

得到结果 
Running test…10% 20% 30% 40% 50% 60% 70% 80% 90% 100%  
# of comparisons: mean 2957.24, max 13120, failures: 2 
可以发现平均查找所需的时间变长了,但是recall相应的变高的(几乎没有错误)。

lshlookup

下面是查找第50个样本,在这之前,首先增加二值向量的长度,即引用文献中的b的长度,这会减少平均每个桶中的元素数目

lshstats(T2(1:10),'test',patches,patches(:,1:1000),2);
  • 1
  • 1

Table 1: 59500 in 33066 bkts, med 1, max 1829, avg 146.51 
Table 2: 59500 in 34018 bkts, med 1, max 1638, avg 160.95 
Table 3: 59500 in 34077 bkts, med 1, max 1386, avg 156.09 
Table 4: 59500 in 35716 bkts, med 1, max 2813, avg 210.50 
Table 5: 59500 in 34492 bkts, med 1, max 1470, avg 194.75 
Table 6: 59500 in 34659 bkts, med 1, max 1543, avg 156.86 
Table 7: 59500 in 33033 bkts, med 1, max 1232, avg 146.30 
Table 8: 59500 in 33923 bkts, med 1, max 1955, avg 152.32 
Table 9: 59500 in 34032 bkts, med 1, max 1718, avg 176.25 
Table 10: 59500 in 32402 bkts, med 1, max 2862, avg 226.41

注意avg变小了

tic; [nnlsh,numcand]=lshlookup(patches(:,50),patches,T2,'k',11,'distfun','lpnorm','distargs',{1});toc
  • 1
  • 1

算法运行结果结果实现检索一个数据所需的时间:

时间已过 0.030697 秒。

下面来解析这个函数的实现 
需要完成的任务是找到所有match这个query的tables。 
步骤1 用哈希函数T(j)获取查询x0的映射的50维(维度为哈希函数中随机选定的位数的长度,即b)二值向量,由于加了128,所以范围是在[128,129]。

  buck = findbucket(T(j).type,x0,T(j).I); 
  • 1
  • 1

步骤2 将该向量转化成哈希key,这一步不是一一映射,而是多对一的映射,主要目的是为了提升向量的检索速度。

 key = lshhash(buck);
  • 1
  • 1

步骤3 根据哈希key值获取所有的哈希向量,一个哈希key值对应着多个bucket

 ihash = T(j).bhash{key}; % possible matching buckets
  • 1
  • 1

步骤4 进一步查找到该哈希向量,即找到对应的桶

 if (~isempty(ihash)) % nothing matchesb = ihash(find(all(bsxfun(@eq,buck,T(j).buckets(ihash,:)),2)));if (~isempty(b))iNN = [iNN T(j).Index{b}]; %把该桶中的数据union起来,因为不同的哈希函数会有不同的结果endend
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

步骤5  
去除重复数据

[iNN,iu]=unique(iNN);
cand = length(iNN);
  • 1
  • 2
  • 1
  • 2

步骤6  
这一步主要是将相似列表中的数据做个排序返回。用于CBIR检索很合适。

if (~isempty(iNN))if (strcmp(sel,'best'))D=feval(distfun,x0,Xsel(x,iNN),distargs{:});% 即比较这些桶中的最近邻数据和query的距离[dist,sortind]=sort(D);ind = find(dist(1:min(k,length(dist)))<=r);%返回小于指定距离的下标,基于iNNiNN=iNN(sortind(ind));% 返回相似数据,这就完成了检索else % randomrp=randperm(cand);choose=[];for i=1:length(rp)d = feval(distfun,x0,Xsel(x,iNN(rp(i))),distargs{:});if (d <= r) choose = [choose iNN(rp(i))];if (length(choose) == k)break;endendendiNN = choose;endend

这篇关于局部敏感哈希LSH,即matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/984564

相关文章

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

IIS 7.0 及更高版本中的 FTP 状态代码

《IIS7.0及更高版本中的FTP状态代码》本文介绍IIS7.0中的FTP状态代码,方便大家在使用iis中发现ftp的问题... 简介尝试使用 FTP 访问运行 Internet Information Services (IIS) 7.0 或更高版本的服务器上的内容时,IIS 将返回指示响应状态的数字代

MySQL 添加索引5种方式示例详解(实用sql代码)

《MySQL添加索引5种方式示例详解(实用sql代码)》在MySQL数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中,下面给大家分享MySQL添加索引5种方式示例详解(实用sql代码),... 在mysql数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中。索引可以在创建表时定义,也可

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元