随机投影森林-一种近似最近邻方法(ANN)

2024-05-13 03:32

本文主要是介绍随机投影森林-一种近似最近邻方法(ANN),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载自:http://blog.sina.com.cn/s/blog_7103b28a0102w1ny.html


当数据个数比较大的时候,线性搜索寻找KNN的时间开销太大,而且需要读取所有的数据在内存中,这是不现实的。因此,实际工程上,使用近似最近邻也就是ANN问题。其中一种方法是利用随机投影树,对所有的数据进行划分,将每次搜索与计算的点的数目减小到一个可接受的范围,然后建立多个随机投影树构成随机投影森林,将森林的综合结果作为最终的结果。

​建立一棵随机投影树的过程大致如下(以二维空间为例):

随机选取一个从原点出发的向量,与这个向量垂直的直线将平面内的点划分为了两部分,将属于这两部分的点分别划分给左子树和右子树。在数学计算上,是通过计算各个点与垂直向量的点积完成这一步骤的,点积大于零的点划分到左子树,点积小于零的点划分到右子树。注意一点,图中不带箭头的直线是用于划分左右子树的依据,带箭头的向量是用于计算点积的。这样,原有的点就划分为了两部分,图例如下:


但是此时一个划分结果内的点的数目还是比较多,因此继续划分。再次随机选取一个向量,与该向量垂直的直线将所有点进行了划分。图例如下:


注意一点,此时的划分是在上一次划分的基础上进行的。​也就是说现在图中的点已经被划分成了四部分,对应于一棵深度为2,有四个叶节点的树。以此类推继续划分下去,直到每个叶节点中点的数目都达到一个足够小的数目。注意这棵树并不是完全树。

利用这棵树对新的点进行最近邻计算时,首先通过计算该点与每次划分所用向量的点积,来找到其所属于的叶节点,然后利用这个叶节点内的​​这些点进行最近邻算法的计算。这个过程是一棵随机投影树的计算过程,利用同样的方法,建立多个随机投影树构成随机森林,将森林的总和结果作为最终的结果。

python中可以完成这个功能的模块包括RPForest和sklearn.neighbors中的LSHForest。


下面这篇讲的更加形象一些,转自:http://blog.csdn.net/armily/article/details/8923961

在机器学习中,随机森林由许多的决策树组成,因为这些决策树的形成采用了随机的方法,因此也叫做随机决策树。随机森林中的树之间是没有关联的。当测试数据进入随机森林时,其实就是让每一颗决策树进行分类,最后取所有决策树中分类结果最多的那类为最终的结果。因此随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。随机森林可以既可以处理属性为离散值的量,比如ID3算法,也可以处理属性为连续值的量,比如C4.5算法。另外,随机森林还可以用来进行无监督学习聚类和异常点检测。

    随机森林由决策树组成,决策树实际上是将空间用超平面进行划分的一种方法,每次分割的时候,都将当前的空间一分为二,比如说下面的决策树(其属性的值都是连续的实数):

  

  将空间划分为成的样子为:

  

  随机深林的优点:比较适合做多分类问题;训练和预测速度快;对训练数据的容错能力,是一种有效地估计缺失数据的一种方法,当数据集中有大比例的数据缺失时仍然可以保持精度不变;能够有效地处理大的数据集;可以处理没有删减的成千上万的变量;能够在分类的过程中可以生成一个泛化误差的内部无偏估计;能够检测到特征之间的相互影响以及重要性程度;不过出现过度拟合;实现简单容易并行化。

 

  下面是具体决策树的生成过程:

  

  其中关于信息增益这里就不作具体的介绍,反正信息增益越大,就说明那个属性相对来说越重要。流程图中的identical values 可以理解为是分类值,离散值,就是它本身不具备数值的意义,比如说颜色分为红,绿,蓝等,是人为给它标定的一个离散值而已。流程图中的real values可以理解为连续的实数,也就是说属性本身是具有数值的,比如说物体的长度,这就是一个real value,在进行这种连续值属性构造决策数时,需要按照属性值的范围进行生成子节点。

 

  当可以生成好决策树后,就比较容易生成随机森林了。下面是随机森林的构造过程:

  1. 假如有N个样本,则有放回的随机选择N个样本(每次随机选择一个样本,然后返回继续选择)。这选择好了的N个样本用来训练一个决策树,作为决策树根节点处的样本。

  2. 当每个样本有M个属性时,在决策树的每个节点需要分裂时,随机从这M个属性中选取出m个属性,满足条件m << M。然后从这m个属性中采用某种策略(比如说信息增益)来选择1个属性作为该节点的分裂属性。

  3. 决策树形成过程中每个节点都要按照步骤2来分裂(很容易理解,如果下一次该节点选出来的那一个属性是刚刚其父节点分裂时用过的属性,则该节点已经达到了叶子节点,无须继续分裂了)。一直到不能够再分裂为止。注意整个决策树形成过程中没有进行剪枝。

  4. 按照步骤1~3建立大量的决策树,这样就构成了随机森林了。

  从上面的步骤可以看出,随机森林的随机性体现在每颗数的训练样本是随机的,树中每个节点的分类属性也是随机选择的。有了这2个随机的保证,随机森林就不会产生过拟合的现象了。

 

  随机森林有2个参数需要人为控制,一个是森林中树的数量,一般建议取很大。另一个是m的大小,推荐m的值为M的均方根。

 

  参考资料:

      决策树模型组合之随机森林与GBDT

     random forest

     http://en.wikipedia.org/wiki/Random_forest

 

 

作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 欢迎转载或分享,但请务必声明文章出处。


这篇关于随机投影森林-一种近似最近邻方法(ANN)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/984561

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr

SpringBoot中ResponseEntity的使用方法举例详解

《SpringBoot中ResponseEntity的使用方法举例详解》ResponseEntity是Spring的一个用于表示HTTP响应的全功能对象,它可以包含响应的状态码、头信息及响应体内容,下... 目录一、ResponseEntity概述基本特点:二、ResponseEntity的基本用法1. 创

java中判断json key是否存在的几种方法

《java中判断jsonkey是否存在的几种方法》在使用Java处理JSON数据时,如何判断某一个key是否存在?本文就来介绍三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目http://www.chinasem.cn录第一种方法是使用 jsONObject 的 has 方法

java中ssh2执行多条命令的四种方法

《java中ssh2执行多条命令的四种方法》本文主要介绍了java中ssh2执行多条命令的四种方法,包括分号分隔、管道分隔、EOF块、脚本调用,可确保环境配置生效,提升操作效率,具有一定的参考价值,感... 目录1 使用分号隔开2 使用管道符号隔开3 使用写EOF的方式4 使用脚本的方式大家平时有没有遇到自