带你手撕红黑树! c++实现 带源码

2024-05-13 01:52
文章标签 c++ 实现 源码 黑树 撕红

本文主要是介绍带你手撕红黑树! c++实现 带源码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、概念

二、特性

三、接口实现

1、插入

情况一:p为黑,结束

情况二:p为红

1)叔叔存在且为红色

2)u不存在/u存在且为黑色

(1)p在左,u在右

(2)u在左,p在右

2、检查平衡

四、对红黑树的理解

五、原码


一、概念

红黑树:AVL树不好控制(严格平衡),所以推出了红黑树
不用高度控制平衡,用颜色
最长路径<= 最短路径*2
红黑树是近似平衡

二、特性

1、每个节点不是红色就是黑色
2、根节点是黑色的
3、如果一个节点是红色的,则他的两个孩子是黑色的(不存在连续的红色节点)
4、如果对于每个节点,从该节点到其后代节点的简单路径上,均包含相同数目的黑色节点(每条路径的黑色节点数量相等)
5、每个叶子节点都是黑色的(叶子节点指的是空节点)

最短路径:全黑
最长路径:一黑一红

三、接口实现

1、插入

说明:p为父,cur为当前节点,u为叔叔节点,g为祖父节点

情况一:p为黑,结束

情况二:p为红

1)叔叔存在且为红色

怎么办?
将p和u变黑,g变红    
    (1)如果g是根节点,再变为黑色


    (2)如果g不是根,继续往上调整 g变cur, parent = g->parent


        有可能会一路更新到根节点,即父节点不存在
        c++库内部的处理是,直接将parent作为while循环条件之一
        然后,在单次数循环结束位置将parent置为黑
        保证parent为黑

2)u不存在/u存在且为黑色

p改黑,g改红,再旋转

(1)p在左,u在右

情况1
//        g
//      p          u
//  c
//
p在左,u在右:以g进行右单旋
p变黑,g变红
 
情况2
//        g
//      p          u
//            c
//
c在右:以p进行左单旋变为情况1
//        g
//      c          u
//  p
//
需修改p和c位置
//        g
//      p          u
//  c
//
再以g右单旋转
p变黑,g变红

(2)u在左,p在右

情况1
//        g
//      u          p
//                  c
//
以g进行左单旋
p变黑,g变红
 


情况2
//        g
//      u          p
//                   c
//
以p进行右单旋变为情况1
//        g
//      u          c
//                p
//
需修改p和c位置
//        g
//      u          p
//                 c
//
再以g右单旋转
p变黑,g变红

2、检查平衡


计算每一条路径的黑色节点的个数
检查是否有连续红色节点
递归
走到空的时候,说明该路径走到头了


p为红之后,就要判断p是左边还是右边
即:u在左,p在右 和 u在右,p在左
就是在p为红色的同时话要细分为两种大情况
然后对于内部还要进行u的判断

四、对红黑树的理解

红黑树的核心,是保证最长路径的长度不超过最短路径的两倍
怎么做到整个特性呢?
通过维持其四个特性
尤其是特性三和特性四
所以,在插入的时候,就要考虑不能打破特性3和特性4
特性3是不能有连续的红色节点
特性4是所有路径的黑色节点个数相同
相比之下,维持特性4明显要比特性3更加严格
维持成本更高,同时也更加难以控制
所以,在插入的时候,为了便于控制和成本
我们选择插入红色节点
剩下的问题,就是要怎么避免出现连续两个红色节点
如果插入的时候,父节点就已经是一个黑色节点
那么,直接插入,此时不会出现连续两个红色节点
同时,这个条路径的黑色节点个数也没有发生变化
但是,如果插入的父节点是一个红色节点呢?
问题来了
怎么办?
父节点是红色,插入的也是红色
只能有一个变黑色
谁变?
新插入节点吗?
如果新插入节点是黑色,那么插入路径黑色节点个数就增大了
就要去维护其他的所有路径的
何其恐怖
所以,只能父节点变黑色
同时,如果父亲有兄弟,就是叔叔节点存在
父节节点变为黑色,父亲节点的路径黑色节点多了一个
那么作为另外一条路径的叔叔节点,也必须变为黑色,也增加一个黑色节点,才能保持
而,父节点的父节点,即祖父节点一定存在且为黑色
因为父节点和叔叔节点(如果存在)已经变为黑色
那么,对于祖父作为根节点的这课子树来说,多了一个黑色节点
因此,祖父节点必须变为红色
以保持平衡
如此,以祖父节点作为根节点的这棵子树已经保持了黑色节点数量不变
但是因为祖父节点已经变为了红色,需要继续往上更改颜色

五、原码

#pragma once
#include<vector>
#include<iostream>
using namespace std;enum Colour{BLACK,RED};template<class K, class V>struct BRTreeNode{BRTreeNode<K, V>* _parent;BRTreeNode<K, V>* _right;BRTreeNode<K, V>* _left;pair<K, V> _kv;Colour _col;BRTreeNode(const pair<K, V>& kv):_parent(nullptr), _right(nullptr), _left(nullptr), _kv(kv), _col(RED){}};template<class K, class V>class BRTree{typedef BRTreeNode<K, V> Node;public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* cur = _root;Node* parent = nullptr;while (cur){if (kv.first < cur->_kv.first){parent = cur;cur = cur->_left;}else if (kv.first > cur->_kv.first){parent = cur;cur = cur->_right;}else//找到相等key{return false;}}cur = new Node(kv);cur->_col = RED;if (kv.first < parent->_kv.first)//插入左{parent->_left = cur;}else //插入右{parent->_right = cur;}cur->_parent = parent;//插入之后,要进行颜色调整while (parent && parent->_col == RED)//如果为空/黑色节点,直接结束{//Node* grandfather = parent->_parent;if (parent == grandfather->_left)//p为左,u为右{Node* uncle = grandfather->_right;//如果叔叔存在,且为红色if (uncle && uncle->_col == RED){//修改颜色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;//向上更新cur = grandfather;parent = cur->_parent;}else//叔叔不存在/叔叔存在且为黑色{if (cur == parent->_left){//		   g//	   p      u//  c//RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//		   g//	   p      u//      c//RotateL(parent);//		   g//	   c      u//  p//RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}else//p为右,u为左{Node* uncle = grandfather->_left;//如果叔叔存在,且为红色if (uncle && uncle->_col == RED){//修改颜色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;//向上更新cur = grandfather;parent = cur->_parent;}else//叔叔不存在/叔叔存在且为黑色{if (cur == parent->_right){//		   g//	   u      p//					c//RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//		   g//	   u      p//          c//RotateR(parent);//		   g//	   u      c//  				p//RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}//右旋void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)//subLR可能为空{subLR->_parent = parent;}subL->_right = parent;Node* ppNode = parent->_parent;parent->_parent = subL;//注意修改顺序if (parent == _root){_root = subL;_root->_parent = nullptr;}else{if (ppNode->_left == parent){ppNode->_left = subL;}else{ppNode->_right = subL;}subL->_parent = ppNode;}}//左旋void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL){subRL->_parent = parent;}subR->_left = parent;Node* ppNode = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;_root->_parent = nullptr;}else{if (ppNode->_left == parent){ppNode->_left = subR;}else{ppNode->_right = subR;}subR->_parent = ppNode;}}//检查平衡bool isBalance(){if (_root->_col == RED){return false;}//找到任意一条路黑色节点个数Node* cur = _root;int refNum = 0;while (cur){if (cur->_col == BLACK){refNum++;}cur = cur->_left;}return Check(_root, 0,  refNum);return 1;}void Inoder(){_Inoder(_root);cout << endl;}private:bool Check(Node* root,int blackNum,const int refNum){//到路径结束位置检查黑色节点if (root == nullptr){if (blackNum != refNum){cout << "黑色节点不相等" << endl;return false;}// << blackNum << endl;return true;}//检查红色节点if (root->_col == RED && root->_parent->_col == RED){cout << root->_kv.first << "连续红节点" << endl;return false;}if (root->_col == BLACK){blackNum++;}return Check(root->_left, blackNum, refNum)&& Check(root->_right, blackNum, refNum);}void _Inoder(const Node* root){if (root == nullptr){return;}_Inoder(root->_left);cout << root->_kv.first << ":" << _root->_kv.second << endl;_Inoder(root->_right);}private:Node* _root = nullptr;};void BRTreeTest1(){int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };int b[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14,8, 3, 1, 10, 6, 4, 7, 14, 13 };BRTree<int, int> t;for (auto e : b){t.Insert({ e,e });}t.Inoder();int ret = t.isBalance();cout << ret << endl;}void BRTreeTest2(){int n = 10000000;//1000万个节点进行测试srand(time(0));vector<int> v;v.reserve(n);for (int i = 0; i < n; ++i){v.push_back(rand() + i);}size_t T1 = clock();BRTree<int, int> t;for (auto e : v){t.Insert(make_pair(e, e));}size_t T2 = clock();cout << "insert:" << T2 - T1 << endl;int ret = t.isBalance();cout << ret << endl;}

这篇关于带你手撕红黑树! c++实现 带源码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/984358

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

C#如何调用C++库

《C#如何调用C++库》:本文主要介绍C#如何调用C++库方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录方法一:使用P/Invoke1. 导出C++函数2. 定义P/Invoke签名3. 调用C++函数方法二:使用C++/CLI作为桥接1. 创建C++/CL

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依