带你手撕红黑树! c++实现 带源码

2024-05-13 01:52
文章标签 c++ 实现 源码 黑树 撕红

本文主要是介绍带你手撕红黑树! c++实现 带源码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、概念

二、特性

三、接口实现

1、插入

情况一:p为黑,结束

情况二:p为红

1)叔叔存在且为红色

2)u不存在/u存在且为黑色

(1)p在左,u在右

(2)u在左,p在右

2、检查平衡

四、对红黑树的理解

五、原码


一、概念

红黑树:AVL树不好控制(严格平衡),所以推出了红黑树
不用高度控制平衡,用颜色
最长路径<= 最短路径*2
红黑树是近似平衡

二、特性

1、每个节点不是红色就是黑色
2、根节点是黑色的
3、如果一个节点是红色的,则他的两个孩子是黑色的(不存在连续的红色节点)
4、如果对于每个节点,从该节点到其后代节点的简单路径上,均包含相同数目的黑色节点(每条路径的黑色节点数量相等)
5、每个叶子节点都是黑色的(叶子节点指的是空节点)

最短路径:全黑
最长路径:一黑一红

三、接口实现

1、插入

说明:p为父,cur为当前节点,u为叔叔节点,g为祖父节点

情况一:p为黑,结束

情况二:p为红

1)叔叔存在且为红色

怎么办?
将p和u变黑,g变红    
    (1)如果g是根节点,再变为黑色


    (2)如果g不是根,继续往上调整 g变cur, parent = g->parent


        有可能会一路更新到根节点,即父节点不存在
        c++库内部的处理是,直接将parent作为while循环条件之一
        然后,在单次数循环结束位置将parent置为黑
        保证parent为黑

2)u不存在/u存在且为黑色

p改黑,g改红,再旋转

(1)p在左,u在右

情况1
//        g
//      p          u
//  c
//
p在左,u在右:以g进行右单旋
p变黑,g变红
 
情况2
//        g
//      p          u
//            c
//
c在右:以p进行左单旋变为情况1
//        g
//      c          u
//  p
//
需修改p和c位置
//        g
//      p          u
//  c
//
再以g右单旋转
p变黑,g变红

(2)u在左,p在右

情况1
//        g
//      u          p
//                  c
//
以g进行左单旋
p变黑,g变红
 


情况2
//        g
//      u          p
//                   c
//
以p进行右单旋变为情况1
//        g
//      u          c
//                p
//
需修改p和c位置
//        g
//      u          p
//                 c
//
再以g右单旋转
p变黑,g变红

2、检查平衡


计算每一条路径的黑色节点的个数
检查是否有连续红色节点
递归
走到空的时候,说明该路径走到头了


p为红之后,就要判断p是左边还是右边
即:u在左,p在右 和 u在右,p在左
就是在p为红色的同时话要细分为两种大情况
然后对于内部还要进行u的判断

四、对红黑树的理解

红黑树的核心,是保证最长路径的长度不超过最短路径的两倍
怎么做到整个特性呢?
通过维持其四个特性
尤其是特性三和特性四
所以,在插入的时候,就要考虑不能打破特性3和特性4
特性3是不能有连续的红色节点
特性4是所有路径的黑色节点个数相同
相比之下,维持特性4明显要比特性3更加严格
维持成本更高,同时也更加难以控制
所以,在插入的时候,为了便于控制和成本
我们选择插入红色节点
剩下的问题,就是要怎么避免出现连续两个红色节点
如果插入的时候,父节点就已经是一个黑色节点
那么,直接插入,此时不会出现连续两个红色节点
同时,这个条路径的黑色节点个数也没有发生变化
但是,如果插入的父节点是一个红色节点呢?
问题来了
怎么办?
父节点是红色,插入的也是红色
只能有一个变黑色
谁变?
新插入节点吗?
如果新插入节点是黑色,那么插入路径黑色节点个数就增大了
就要去维护其他的所有路径的
何其恐怖
所以,只能父节点变黑色
同时,如果父亲有兄弟,就是叔叔节点存在
父节节点变为黑色,父亲节点的路径黑色节点多了一个
那么作为另外一条路径的叔叔节点,也必须变为黑色,也增加一个黑色节点,才能保持
而,父节点的父节点,即祖父节点一定存在且为黑色
因为父节点和叔叔节点(如果存在)已经变为黑色
那么,对于祖父作为根节点的这课子树来说,多了一个黑色节点
因此,祖父节点必须变为红色
以保持平衡
如此,以祖父节点作为根节点的这棵子树已经保持了黑色节点数量不变
但是因为祖父节点已经变为了红色,需要继续往上更改颜色

五、原码

#pragma once
#include<vector>
#include<iostream>
using namespace std;enum Colour{BLACK,RED};template<class K, class V>struct BRTreeNode{BRTreeNode<K, V>* _parent;BRTreeNode<K, V>* _right;BRTreeNode<K, V>* _left;pair<K, V> _kv;Colour _col;BRTreeNode(const pair<K, V>& kv):_parent(nullptr), _right(nullptr), _left(nullptr), _kv(kv), _col(RED){}};template<class K, class V>class BRTree{typedef BRTreeNode<K, V> Node;public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* cur = _root;Node* parent = nullptr;while (cur){if (kv.first < cur->_kv.first){parent = cur;cur = cur->_left;}else if (kv.first > cur->_kv.first){parent = cur;cur = cur->_right;}else//找到相等key{return false;}}cur = new Node(kv);cur->_col = RED;if (kv.first < parent->_kv.first)//插入左{parent->_left = cur;}else //插入右{parent->_right = cur;}cur->_parent = parent;//插入之后,要进行颜色调整while (parent && parent->_col == RED)//如果为空/黑色节点,直接结束{//Node* grandfather = parent->_parent;if (parent == grandfather->_left)//p为左,u为右{Node* uncle = grandfather->_right;//如果叔叔存在,且为红色if (uncle && uncle->_col == RED){//修改颜色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;//向上更新cur = grandfather;parent = cur->_parent;}else//叔叔不存在/叔叔存在且为黑色{if (cur == parent->_left){//		   g//	   p      u//  c//RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//		   g//	   p      u//      c//RotateL(parent);//		   g//	   c      u//  p//RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}else//p为右,u为左{Node* uncle = grandfather->_left;//如果叔叔存在,且为红色if (uncle && uncle->_col == RED){//修改颜色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;//向上更新cur = grandfather;parent = cur->_parent;}else//叔叔不存在/叔叔存在且为黑色{if (cur == parent->_right){//		   g//	   u      p//					c//RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//		   g//	   u      p//          c//RotateR(parent);//		   g//	   u      c//  				p//RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}//右旋void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)//subLR可能为空{subLR->_parent = parent;}subL->_right = parent;Node* ppNode = parent->_parent;parent->_parent = subL;//注意修改顺序if (parent == _root){_root = subL;_root->_parent = nullptr;}else{if (ppNode->_left == parent){ppNode->_left = subL;}else{ppNode->_right = subL;}subL->_parent = ppNode;}}//左旋void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL){subRL->_parent = parent;}subR->_left = parent;Node* ppNode = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;_root->_parent = nullptr;}else{if (ppNode->_left == parent){ppNode->_left = subR;}else{ppNode->_right = subR;}subR->_parent = ppNode;}}//检查平衡bool isBalance(){if (_root->_col == RED){return false;}//找到任意一条路黑色节点个数Node* cur = _root;int refNum = 0;while (cur){if (cur->_col == BLACK){refNum++;}cur = cur->_left;}return Check(_root, 0,  refNum);return 1;}void Inoder(){_Inoder(_root);cout << endl;}private:bool Check(Node* root,int blackNum,const int refNum){//到路径结束位置检查黑色节点if (root == nullptr){if (blackNum != refNum){cout << "黑色节点不相等" << endl;return false;}// << blackNum << endl;return true;}//检查红色节点if (root->_col == RED && root->_parent->_col == RED){cout << root->_kv.first << "连续红节点" << endl;return false;}if (root->_col == BLACK){blackNum++;}return Check(root->_left, blackNum, refNum)&& Check(root->_right, blackNum, refNum);}void _Inoder(const Node* root){if (root == nullptr){return;}_Inoder(root->_left);cout << root->_kv.first << ":" << _root->_kv.second << endl;_Inoder(root->_right);}private:Node* _root = nullptr;};void BRTreeTest1(){int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };int b[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14,8, 3, 1, 10, 6, 4, 7, 14, 13 };BRTree<int, int> t;for (auto e : b){t.Insert({ e,e });}t.Inoder();int ret = t.isBalance();cout << ret << endl;}void BRTreeTest2(){int n = 10000000;//1000万个节点进行测试srand(time(0));vector<int> v;v.reserve(n);for (int i = 0; i < n; ++i){v.push_back(rand() + i);}size_t T1 = clock();BRTree<int, int> t;for (auto e : v){t.Insert(make_pair(e, e));}size_t T2 = clock();cout << "insert:" << T2 - T1 << endl;int ret = t.isBalance();cout << ret << endl;}

这篇关于带你手撕红黑树! c++实现 带源码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/984358

相关文章

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景