牛津大学和上海交大将SAM和Flow应用于移动目标,简单而有效,轻松分割运动目标!

本文主要是介绍牛津大学和上海交大将SAM和Flow应用于移动目标,简单而有效,轻松分割运动目标!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

光流可以在运动物体分割中发现运动物体并为分割提供清晰的边界。然而,如果物体暂时静止,就会面临分割挑战。

而我们知道SAM可以很好的分割静态图像对象。因此,是否可以利用SAM与光流结合来在视频中进行移动物体分割?

今天给大家介绍的这篇文章介绍并探索了两个模型,以利用SAM在视频中进行移动物体分割,使主要移动物体能够与背景运动区分开来。主要贡献有三个方面:

  • FlowI-SAM模型,利用光流作为三通道输入图像进行精确的逐帧分割和移动物体识别。

  • FlowP-SAM模型,这是RGB和流的双流数据的新颖组合,利用光流生成提示,指导SAM在RGB图像中识别和定位移动物体。

  • 在移动物体分割基准上,包括DAVIS、YTVOS和MoCA,在帧级和序列级上都取得了新的领先性能。

相关链接

项目:www.robots.ox.ac.uk/~vgg/research/flowsam

论文:arxiv.org/abs/2404.12389

代码:github.com/Jyxarthur/flowsam

论文阅读

摘要

本文的目标是运动分割——发现和分割视频中的运动物体。这是一个被广泛研究的领域,有许多谨慎的,有时甚至是复杂的方法和训练方案,包括:自监督学习,从合成数据集学习,以对象为中心的表示,模态表示等等。我们在本文中感兴趣的是确定分段任意模型(SAM)是否可以为这项任务做出贡献。

我们研究了两种将SAM与光流相结合的模型,利用了SAM的分割能力和光流发现和分组运动物体的能力。首先,我们对SAM进行调整,使其将流(而不是RGB)作为输入。在第二个模型中,SAM以RGB作为输入,flow作为分割提示符。

这些令人惊讶的简单方法,无需任何进一步的修改,在单对象和多对象基准测试中都比以前的所有方法都要好得多。我们还将这些帧级分割扩展到保持对象身份的序列级分割。同样,这个简单的模型在多个视频对象分割基准上优于以前的方法。

方法

将SAM应用于视频目标分割。

  • (a)流作为输入:flow-sam只接收光流并预测帧级分割掩码。

  • (b) flow-as-prompt: FlowP-SAM接受RGB并应用flow作为帧级分割提示符的信息。

  • (c)序列级掩码关联:作为后处理步骤,多掩码选择模块自回归从FlowI-SAM和/或FlowP-SAM转换帧级掩码输出并产生序列级掩码,其中对象标识在整个序列中是一致的。

flow-sam概述

  • (a) flow-sam的推理管道。

  • (b)体系结构带有可训练参数标记的flow - sam。生成点提示令牌由一个冻结的提示编码器。

FlowP-SAM概述

  • (a) FlowP-SAM的推理管道。

  • (b)体系结构FlowP-SAM。流提示生成器生成要注入的流提示类似sam的基于rgb的分段模块。两个模块取同一点提示令牌,从冻结的提示编码器获得。

  • (c)流量变压器的详细结构。译输入令牌作为轻量级查询的功能变压器解码器,迭代处理密集流特性。输出移动对象分数(MOS)令牌然后由基于mlp的头部处理以预测分数指示输入点提示符是否对应于移动对象。

实验

DAVIS上flow-sam方法的定性比较 (左),YTVOS(中)和MoCA(右)序列。我们的flow-sam(seq)成功地从嘈杂的光流背景中识别出运动物体(例如,鸭子第四栏)。

基于rgb的分割方法的定性比较DAVIS(左),YTVOS(中)和SegTrackv2(右)。而前面的方法 (第三行)努力解开多个移动的物体(例如,混合的金鱼,在第二列中),我们的FlowI-SAM (seq)准确地分离和分割所有移动对象。

结论

在本文中,我们通过两种方式将每帧SAM与运动信息(光流)结合起来,专注于现实世界视频中的运动目标分割:

  • (i)对于纯流分割,我们引入了直接接收的flow-sam光流作为输入;

  • (ii)对于基于rgb的分割,我们利用运动信息来生成流提示作为指导。

这两种方法在跨单对象和多对象的帧级分割中都提供了最先进的性能基准。此外,我们开发了一种基于帧的关联方法合并FlowI-SAM和FlowP-SAM的预测,实现序列级分割预测,优于所有先前在DAVIS上的方法。

这项工作的主要限制是它的运行时间长,归因于 到普通SAM中计算量大的图像编码器。然而,我们的 该方法一般适用于其他基于提示符的分割模型。 随着更有效的SAM版本的出现,我们预计会有显著的 减少推理时间。

这篇关于牛津大学和上海交大将SAM和Flow应用于移动目标,简单而有效,轻松分割运动目标!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/984092

相关文章

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

Python如何将大TXT文件分割成4KB小文件

《Python如何将大TXT文件分割成4KB小文件》处理大文本文件是程序员经常遇到的挑战,特别是当我们需要把一个几百MB甚至几个GB的TXT文件分割成小块时,下面我们来聊聊如何用Python自动完成这... 目录为什么需要分割TXT文件基础版:按行分割进阶版:精确控制文件大小完美解决方案:支持UTF-8编码

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S