基于YOLOV8复杂场景下船舶目标检测系统

2024-05-12 22:28

本文主要是介绍基于YOLOV8复杂场景下船舶目标检测系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 背景

海洋作为地球上70%的表面积,承载着人类生活、经济发展和生态系统的重要功能。船舶作为海洋活动的主要载体之一,在海上运输、资源开发、环境监测等方面发挥着重要作用。复杂海洋环境下的船舶目标检测成为了海事管理、海洋资源开发和环境保护等领域的关键技术之一。

2. YOLOv8算法

为什么我应该使用 YOLOv8?

  • YOLOv8 具有许多开发人员方便的功能,从易于使用的 CLI 到结构良好的 Python 包。
  • YOLO 周围有一个庞大的社区,围绕 YOLOv8 模型的社区也在不断壮大,这意味着计算机视觉圈子里有很多人在你需要指导时可以为您提供帮助。YOLOv8在COCO上实现了很高的准确性。例如,YOLOv8m模型 - 中等模型 - 在COCO上测量时达到50.2%的mAP。当针对Roboflow 100(专门评估各种任务特定域上的模型性能的数据集)进行评估时,YOLOv8的得分明显优于YOLOv5。本文后面的性能分析中提供了有关此内容的更多信息。此外,YOLOv8 中方便开发人员的功能也很重要。与其他模型相反,任务被拆分到您可以执行的许多不同 Python 文件中,YOLOv8 带有一个 CLI,使训练模型更加直观。这是对 Python 包的补充,该包提供了比以前的模型更无缝的编码体验。当您考虑使用模型时,YOLO 周围的社区值得注意。许多计算机视觉专家都知道 YOLO 及其工作原理,并且网上有很多关于在实践中使用 YOLO 的指导。尽管 YOLOv8 在撰写本文时是新的,但网上有许多指南可以提供帮助。以下是一些学习资源,您可以使用它们来提高您对 YOLO 的了解:
  • Roboflow 模型上的 YOLOv8 模型卡
  • 如何在自定义数据集上训练YOLOv8模型
  • 如何在自定义数据集上训练YOLOv8模型
  • 用于训练YOLOv8目标检测模型的谷歌Colab笔记本
  • 用于训练YOLOv8分类模型的谷歌Colab笔记本
  • 用于训练YOLOv8分割模型的谷歌Colab笔记本
  • 使用YOLOv8和ByteTRACK跟踪和计数车辆)让我们深入了解架构以及 YOLOv8 与以前的 YOLO 模型的不同之处。

2.1 YOLOv8检测网络

在这里插入图片描述

2.2 模型结构

如下图, 左侧为 YOLOv5-s,右侧为 YOLOv8-s。
在暂时不考虑 Head 情况下,对比 YOLOv5 和 YOLOv8 的 yaml 配置文件可以发现改动较小。
在这里插入图片描述
在这里插入图片描述

3. 软件界面功能

  1. 可用于实时检测各类复杂场景种的船舶位置,并显示目标数量;
  2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测;
  3. 界面可实时显示目标位置、目标总数、置信度、用时等信息;
  4. 支持图片或者视频的检测结果保存;

4. 数据集与训练

数据集为各类复杂场景下的船舶图片,并使用Labelimg标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含5090张图片,其中训练集包含4576张图片,验证集包含509张图片,测试包含5张图片。
该数据集是专为研究和解决复杂场景下船舶目标检测问题而设计。包含多样性丰富的环境,如交通繁忙的港口、船只密集的渔业区,以及船与岸边混合交通场景。与传统的船舶目标检测数据集不同,本数据集特意考虑了在实际应用场景中常见但在数据集中经常被忽视的问题。例如,船舶在图像或视频帧中不一定是主体,有时仅作为背景出现。此外,数据集还包括船只部分或完全被其他对象遮挡的情况。这些特点使得本数据集非常适用于开发和评估目标检测算法在复杂、多变和部分遮挡条件下的性能。数据集旨在推动船舶目标检测和相关领域的研究进展,以满足日益增长的实际应用需求,例如航海安全、渔业管理以及海洋环境保护等。
在这里插入图片描述
在这里插入图片描述
data.yaml的具体内容如下:

train: D:\BoatDetection\datasets\Data\train
val: D:\BoatDetection\datasets\Data\val
nc: 1
names: ['boat']

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

from ultralytics import YOLO# 加载预训练模型
model = YOLO("yolov8n.pt")
# Use the model
if __name__ == '__main__':# Use the modelresults = model.train(data='D:\BoatDetection\datasets\Data\data.yaml', epochs=300, batch=4)  # 训练模型

4.1 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述
本文训练结果如下:
在这里插入图片描述
PR曲线:
在这里插入图片描述

5. 检测结果识别

在这里插入图片描述

6. 结论与展望

基于YOLOv8的船舶目标检测系统为复杂海洋环境下的船舶监测与管理提供了一种高效准确的解决方案。未来,随着人工智能和深度学习技术的不断发展,该系统将进一步提升在海洋领域的应用价值,为构建美丽海洋、实现可持续发展做出更大贡献。

这篇关于基于YOLOV8复杂场景下船舶目标检测系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/983908

相关文章

Java集成Onlyoffice的示例代码及场景分析

《Java集成Onlyoffice的示例代码及场景分析》:本文主要介绍Java集成Onlyoffice的示例代码及场景分析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 需求场景:实现文档的在线编辑,团队协作总结:两个接口 + 前端页面 + 配置项接口1:一个接口,将o

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参

IDEA实现回退提交的git代码(四种常见场景)

《IDEA实现回退提交的git代码(四种常见场景)》:本文主要介绍IDEA实现回退提交的git代码(四种常见场景),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.已提交commit,还未push到远端(Undo Commit)2.已提交commit并push到

ubuntu20.0.4系统中安装Anaconda的超详细图文教程

《ubuntu20.0.4系统中安装Anaconda的超详细图文教程》:本文主要介绍了在Ubuntu系统中如何下载和安装Anaconda,提供了两种方法,详细内容请阅读本文,希望能对你有所帮助... 本文介绍了在Ubuntu系统中如何下载和安装Anaconda。提供了两种方法,包括通过网页手动下载和使用wg

ubuntu系统使用官方操作命令升级Dify指南

《ubuntu系统使用官方操作命令升级Dify指南》Dify支持自动化执行、日志记录和结果管理,适用于数据处理、模型训练和部署等场景,今天我们就来看看ubuntu系统中使用官方操作命令升级Dify的方... Dify 是一个基于 docker 的工作流管理工具,旨在简化机器学习和数据科学领域的多步骤工作流。

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与

使用Python和SQLAlchemy实现高效的邮件发送系统

《使用Python和SQLAlchemy实现高效的邮件发送系统》在现代Web应用中,邮件通知是不可或缺的功能之一,无论是订单确认、文件处理结果通知,还是系统告警,邮件都是最常用的通信方式之一,本文将详... 目录引言1. 需求分析2. 数据库设计2.1 User 表(存储用户信息)2.2 CustomerO

Redis中RedisSearch使用及应用场景

《Redis中RedisSearch使用及应用场景》RedisSearch是一个强大的全文搜索和索引模块,可以为Redis添加高效的搜索功能,下面就来介绍一下RedisSearch使用及应用场景,感兴... 目录1. RedisSearch的基本概念2. RedisSearch的核心功能(1) 创建索引(2

Linux系统调试之ltrace工具使用与调试过程

《Linux系统调试之ltrace工具使用与调试过程》:本文主要介绍Linux系统调试之ltrace工具使用与调试过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、ltrace 定义与作用二、ltrace 工作原理1. 劫持进程的 PLT/GOT 表2. 重定

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ