mysql、redis、mongodb都是怎么实现 “附近的人” 功能的

2024-05-12 16:38

本文主要是介绍mysql、redis、mongodb都是怎么实现 “附近的人” 功能的,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

米 | 千米 | 英尺 | 英里。
  • WITHDIST:在返回位置对象的同时,将位置对象与中心之间的距离也一并返回。距离的单位和用户给定的范围单位保持一致。
  • WITHCOORD:将位置对象的经度和维度也一并返回。
  • WITHHASH:以 52 位有符号整数的形式,返回位置对象经过原始 geohash 编码的有序集合分值。这个选项主要用于底层应用或者调试,实际中的作用并不大。
  • ASC | DESC:从近到远返回位置对象元素 | 从远到近返回位置对象元素。
  • COUNT count:选取前N个匹配位置对象元素。(不设置则返回所有元素)
  • STORE key:将返回结果的地理位置信息保存到指定key。
  • STORedisT key:将返回结果离中心点的距离保存到指定key。

例如下边命令:获取当前位置周边500米内的所有饭店。

GEORADIUS hotel 119.98866180732716	30.27465803229662 500 m WITHCOORD
复制代码

Redis内部使用有序集合(zset)保存用户的位置信息,zset中每个元素都是一个带位置的对象,元素的score值为通过经、纬度计算出的52位geohash值。

2、利弊分析

redis实现附近的人效率比较高,集成也比较简单,而且还支持对距离排序。不过,结果存在一定的误差,要想让结果更加精确,还需要手动将用户中心位置与其他用户位置计算距离后,再一次进行筛选。

3、实现

以下就是Java redis实现版本,代码非常的简洁。

 @Autowiredprivate RedisTemplate<String, Object> redisTemplate;//GEO相关命令用到的KEYprivate final static String KEY = "user_info";public boolean save(User user) {Long flag = redisTemplate.opsForGeo().add(KEY, new RedisGeoCommands.GeoLocation<>(user.getName(), new Point(user.getLongitude(), user.getLatitude())));return flag != null && flag > 0;}/*** 根据当前位置获取附近指定范围内的用户* @param distance 指定范围 单位km ,可根据{@link org.springframework.data.geo.Metrics} 进行设置* @param userLng 用户经度* @param userLat 用户纬度* @return*/public String nearBySearch(double distance, double userLng, double userLat) {List<User> users = new ArrayList<>();// 1.GEORADIUS获取附近范围内的信息GeoResults<RedisGeoCommands.GeoLocation<Object>> reslut = redisTemplate.opsForGeo().radius(KEY, new Circle(new Point(userLng, userLat), new Distance(distance, Metrics.KILOMETERS)),RedisGeoCommands.GeoRadiusCommandArgs.newGeoRadiusArgs().includeDistance().includeCoordinates().sortAscending());//2.收集信息,存入listList<GeoResult<RedisGeoCommands.GeoLocation<Object>>> content = reslut.getContent();//3.过滤掉超过距离的数据content.forEach(a-> users.add(new User().setDistance(a.getDistance().getValue()).setLatitude(a.getContent().getPoint().getX()).setLongitude(a.getContent().getPoint().getY())));return JSON.toJSONString(users);}
复制代码

六、MongoDB + 2d索引

1、设计思路

MongoDB实现附近的人,主要是通过它的两种地理空间索引 2dsphere2d。 两种索引的底层依然是基于Geohash来进行构建的。但与国际通用的Geohash还有一些不同,具体参考官方文档。

2dsphere 索引仅支持球形表面的几何形状查询。

2d 索引支持平面几何形状和一些球形查询。虽然2d 索引支持某些球形查询,但 2d 索引对这些球形查询时,可能会出错。所以球形查询尽量选择 2dsphere索引。

尽管两种索引的方式不同,但只要坐标跨度不太大,这两个索引计算出的距离相差几乎可以忽略不计。

2、实现

首先插入一批位置数据到MongoDBcollection为起名 hotel,相当于MySQL的表名。两个字段name名称,location 为经、纬度数据对。

db.hotel.insertMany([{'name':'hotel1',  location:[115.993121,28.676436]},{'name':'hotel2',  location:[116.000093,28.679402]},{'name':'hotel3',  location:[115.999967,28.679743]},{'name':'hotel4',  location:[115.995593,28.681632]},{'name':'hotel5',  location:[115.975543,28.679509]},{'name':'hotel6',  location:[115.968428,28.669368]},{'name':'hotel7',  location:[116.035262,28.677037]},{'name':'hotel8',  location:[116.024770,28.68667]},{'name':'hotel9',  location:[116.002384,28.683865]},{'name':'hotel10', location:[116.000821,28.68129]},
])
复制代码

接下来我们给 location 字段创建一个2d索引,索引的精度通过bits来指定,bits越大,索引的精度就越高。

db.coll.createIndex({'location':"2d"}, {"bits":11111})
复制代码

geoNear命令测试一下, near 当前坐标(经、纬度),spherical 是否计算球面距离,distanceMultiplier地球半径,单位是米,默认6378137, maxDistance 过滤条件(指定距离内的用户),开启弧度需除distanceMultiplierdistanceField 计算出的两点间距离,字段别名(随意取名)。

db.hotel.aggregate({$geoNear:{near: [115.999567,28.681813], // 当前坐标spherical: true, // 计算球面距离distanceMultiplier: 6378137, // 地球半径,单位是米,那么的除的记录也是米maxDistance: 2000/6378137, // 过滤条件2000米内,需要弧度distanceField: "distance" // 距离字段别名}
})
复制代码

看到结果中有符合条件的数据,还多出一个字段distance 刚才设置的别名,代表两点间的距离。

{ "_id" : ObjectId("5e96a5c91b8d4ce765381e58"), "name" : "hotel10", "location" : [ 116.000821, 28.68129 ], "distance" : 135.60095397487655 }
{ "_id" : ObjectId("5e96a5c91b8d4ce765381e51"), "name" : "hotel3", "location" : [ 115.999967, 28.679743 ], "distance" : 233.71915803517447 }
{ "_id" : ObjectId("5e96a5c91b8d4ce765381e50"), "name" : "hotel2", "location" : [ 116.000093, 28.679402 ], "distance" : 273.26317035334176 }
{ "_id" : ObjectId("5e96a5c91b8d4ce765381e57"), "name" : "hotel9", "location" : [ 116.002384, 28.683865 ], "distance" : 357.5791936927476 }
{ "_id" : ObjectId("5e96a5c91b8d4ce765381e52"), "name" : "hotel4", "location" : [ 115.995593, 28.681632 ], "distance" : 388.62555058249967 }
{ "_id" : ObjectId("5e96a5c91b8d4ce765381e4f"), "name" : "hotel1", "location" : [ 115.993121, 28.676436 ], "distance" : 868.6740526419927 }
复制代码


作者:程序员内点事
链接:https://juejin.cn/post/6844904129853128717
来源:掘金
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

这篇关于mysql、redis、mongodb都是怎么实现 “附近的人” 功能的的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/983167

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三