使用SPI驱动串行LCD的驱动实现(STM32F4)

2024-05-12 08:12

本文主要是介绍使用SPI驱动串行LCD的驱动实现(STM32F4),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

概述

1. 硬件介绍

1.1 ST7796-LCD

1.2 MCU IO与LCD PIN对应关系

2 功能实现

2.1 使用STM32Cube配置Project

 2.2 STM32Cube生成工程

3 代码实现

3.1 SPI接口实现

3.2 LCD驱动程序实现

3.3 测试程序实现

 4 测试


源代码下载地址:

https://gitee.com/mftang/stm32_open_test_proj/tree/master/stm32_f407_lcd_proj/UserCode/lcd_drv

测试视频:

使用SPI驱动串行LCD的驱动实现(STM32F4)

概述

本文主要讲述使用STM32硬件SPI接口驱动ST7796-LCD,主控MCU为STM32F407芯片。笔者详细介绍整个驱动的实现过程,并使用STM32Cube生成一个工程,测试驱动程序的功能。

1. 硬件介绍

1.1 ST7796-LCD

LCD的PIN引脚功能介绍

序号模块引脚引脚说明
1VCC屏电源正
2GND屏电源地
3LCD_CS液晶屏片选控制信号,低电平有效
4LCD_RST液晶屏复位控制信号,低电平复位
5LCD_RS液晶屏命令/数据选择控制信号

高电平:数据,低电平:命令

6SDI(MOSI)SPI总线写数据信号(SD卡和液晶屏共用)
7SCKSPI总线时钟信号(SD卡和液晶屏共用)
8LED液晶屏背光控制信号(如需要控制,请接引脚,如不需要控制,可以不接)
9SDO(MISO)SPI总线读数据信号(SD卡和液晶屏共用)
10CTP_SCL电容触摸屏IIC总线时钟信号(无触摸屏的模块不需连接)
11CTP_RST电容触摸屏复位控制信号,低电平复位(无触摸屏的模块不需连接)
12CTP_SDA电容触摸屏IIC总线数据信号(无触摸屏的模块不需连接)
13CTP_INT电容触摸屏IIC总线触摸中断信号,产生触摸时,输入低电平到主控(无触摸屏的模块不需连接)
14SD_CSSD卡片选控制信号,低电平有效(不使用SD卡功能,可不接)

实体LCD Port对应关系如下图所示

1.2 MCU IO与LCD PIN对应关系

STM32 PIN引脚LCD PIN引脚
PB5-MOSIMOSI
PB4-MISOMISO
PB3-SCKSCK
PB6CS
PB9RST
PB8RS

2 功能实现

2.1 使用STM32Cube配置Project

1) 配置SPI接口

SPI的参数

2)配置LCD的控制引脚

3)使能外部晶振

 2.2 STM32Cube生成工程

使用STM32Cube生成工程,并创建两个目录

User/lcd_drv     驱动文件目录

User/test           测试文件目录

3 代码实现

3.1 SPI接口实现

在spi.c文件中实现读写接口函数,具体实现如下:

/* USER CODE BEGIN 1 */void hal_spi_writebyte( uint8_t byte )
{uint8_t buff[1];buff[0] = byte;HAL_SPI_Transmit( &hspi3, buff, 1, 1000);
}uint8_t hal_spi_readbyte(void)
{uint8_t buff[1];buff[0] = 0xff;return HAL_SPI_Receive( &hspi3, buff, 1, 1000);
}/* USER CODE END 1 */

3.2 LCD驱动程序实现

创建lcd_drv.c实现驱动程序,lcd_spi.c实现和MCU之间的驱动接口

 1)lcd_drv.c 程序实现

#include "lcd_drv.h"
#include "lcd_spi.h"_lcd_dev lcddev;void LCD_WR_REG(uint8_t data)
{ LCD_CS_CLR;LCD_RS_CLR; SPI_WriteByte(data);LCD_CS_SET;
}void LCD_WR_DATA(uint8_t data)
{LCD_CS_CLR;LCD_RS_SET;SPI_WriteByte(data);LCD_CS_SET;
}uint8_t LCD_RD_DATA(void)
{uint8_t data;LCD_CS_CLR;LCD_RS_SET;data = SPI_ReadByte();LCD_CS_SET;return data;
}void LCD_WriteReg(uint8_t LCD_Reg, uint16_t LCD_RegValue)
{LCD_WR_REG(LCD_Reg);  LCD_WR_DATA(LCD_RegValue); 
}uint8_t LCD_ReadReg(uint8_t LCD_Reg)
{LCD_WR_REG(LCD_Reg);return LCD_RD_DATA();
}void LCD_WriteRAM_Prepare(void)
{LCD_WR_REG(lcddev.wramcmd);
}void Lcd_WriteData_16Bit(uint16_t Data)
{LCD_CS_CLR;LCD_RS_SET;SPI_WriteByte(Data>>8);SPI_WriteByte(Data);LCD_CS_SET;
}uint16_t Lcd_ReadData_16Bit(void)
{uint16_t r,g;LCD_CS_CLR;LCD_RS_CLR;SPI_WriteByte(lcddev.rramcmd);LCD_RS_SET;SPI_ReadByte();r = SPI_ReadByte();g = SPI_ReadByte();LCD_CS_SET;r<<=8;r|=g;return r;
}void LCD_DrawPoint(uint16_t x,uint16_t y, uint16_t color)
{LCD_SetCursor(x,y);Lcd_WriteData_16Bit(color); 
}uint16_t LCD_ReadPoint(uint16_t x,uint16_t y)
{uint16_t color;LCD_SetCursor(x,y);color = Lcd_ReadData_16Bit();return color;
}void LCD_Clear(uint16_t Color)
{uint16_t i,m; LCD_SetWindows(0,0,lcddev.width-1,lcddev.height-1);LCD_CS_CLR;LCD_RS_SET;for(i=0;i<lcddev.height;i++){for(m=0;m<lcddev.width;m++){SPI_WriteByte(Color>>8);SPI_WriteByte(Color);}}LCD_CS_SET;
} void LCD_SetWindows(uint16_t xStar, uint16_t yStar,uint16_t xEnd,uint16_t yEnd)
{LCD_WR_REG(lcddev.setxcmd);LCD_WR_DATA(xStar>>8);LCD_WR_DATA(0x00FF&xStar);LCD_WR_DATA(xEnd>>8);LCD_WR_DATA(0x00FF&xEnd);LCD_WR_REG(lcddev.setycmd);LCD_WR_DATA(yStar>>8);LCD_WR_DATA(0x00FF&yStar);LCD_WR_DATA(yEnd>>8);LCD_WR_DATA(0x00FF&yEnd);LCD_WriteRAM_Prepare();
} void LCD_SetCursor(uint16_t Xpos, uint16_t Ypos)
{LCD_SetWindows(Xpos,Ypos,Xpos,Ypos);
}void LCD_direction(uint8_t direction)
{ lcddev.setxcmd=0x2A;lcddev.setycmd=0x2B;lcddev.wramcmd=0x2C;lcddev.rramcmd=0x2E;lcddev.dir = direction%4;switch(lcddev.dir){  case 0:lcddev.width=LCD_W;lcddev.height=LCD_H;LCD_WriteReg(0x36,(1<<3)|(1<<6));break;case 1:lcddev.width=LCD_H;lcddev.height=LCD_W;LCD_WriteReg(0x36,(1<<3)|(1<<5));break;case 2:lcddev.width=LCD_W;lcddev.height=LCD_H;LCD_WriteReg(0x36,(1<<3)|(1<<7));break;case 3:lcddev.width=LCD_H;lcddev.height=LCD_W;LCD_WriteReg(0x36,(1<<3)|(1<<7)|(1<<6)|(1<<5));break;default:break;}
} uint16_t LCD_Read_ID(void)
{uint8_t i,val[3] = {0};LCD_WR_REG(0xF0);     // Command Set ControlLCD_WR_DATA(0xC3);   LCD_WR_REG(0xF0);     LCD_WR_DATA(0x96);  LCD_CS_CLR;for(i=1;i<4;i++){LCD_RS_CLR;	  SPI_WriteByte(0xFB);LCD_RS_SET;SPI_WriteByte(0x10+i);LCD_RS_CLR;	  SPI_WriteByte(0xD3);LCD_RS_SET;val[i-1] = SPI_ReadByte();LCD_RS_CLR;	  SPI_WriteByte(0xFB);LCD_RS_SET;SPI_WriteByte(0x00);}LCD_CS_SET;LCD_WR_REG(0xF0);     // Command Set ControlLCD_WR_DATA(0x3C);   LCD_WR_REG(0xF0);     LCD_WR_DATA(0x69);  lcddev.id=val[1];lcddev.id<<=8;lcddev.id|=val[2];return lcddev.id;
}void LCD_RESET(void)
{LCD_RST_CLR;lcd_delay_us(100);LCD_RST_SET;lcd_delay_us(50);
}void LCD_Init(void)
{  LCD_RESET();          //LCD//*************3.5 ST7796S IPSLCD_WR_REG(0x11);     lcd_delay_us(120);    //Delay 120mslcd_delay_us(120);    //Delay 120msLCD_WR_REG(0x36);     // Memory Data Access Control MY,MX~~LCD_WR_DATA(0x48);   LCD_WR_REG(0x3A);     LCD_WR_DATA(0x55);   LCD_WR_REG(0xF0);     // Command Set ControlLCD_WR_DATA(0xC3);   LCD_WR_REG(0xF0);     LCD_WR_DATA(0x96);   LCD_WR_REG(0xB4);     LCD_WR_DATA(0x01);   LCD_WR_REG(0xB7);     LCD_WR_DATA(0xC6);   //LCD_WR_REG(0xB9);     //LCD_WR_DATA(0x02);//LCD_WR_DATA(0xE0);LCD_WR_REG(0xC0);     LCD_WR_DATA(0x80);   LCD_WR_DATA(0x45);   LCD_WR_REG(0xC1);     LCD_WR_DATA(0x13);   //18  //00LCD_WR_REG(0xC2);     LCD_WR_DATA(0xA7);   LCD_WR_REG(0xC5);     LCD_WR_DATA(0x0A);   LCD_WR_REG(0xE8);     LCD_WR_DATA(0x40);LCD_WR_DATA(0x8A);LCD_WR_DATA(0x00);LCD_WR_DATA(0x00);LCD_WR_DATA(0x29);LCD_WR_DATA(0x19);LCD_WR_DATA(0xA5);LCD_WR_DATA(0x33);LCD_WR_REG(0xE0);LCD_WR_DATA(0xD0);LCD_WR_DATA(0x08);LCD_WR_DATA(0x0F);LCD_WR_DATA(0x06);LCD_WR_DATA(0x06);LCD_WR_DATA(0x33);LCD_WR_DATA(0x30);LCD_WR_DATA(0x33);LCD_WR_DATA(0x47);LCD_WR_DATA(0x17);LCD_WR_DATA(0x13);LCD_WR_DATA(0x13);LCD_WR_DATA(0x2B);LCD_WR_DATA(0x31);LCD_WR_REG(0xE1);LCD_WR_DATA(0xD0);LCD_WR_DATA(0x0A);LCD_WR_DATA(0x11);LCD_WR_DATA(0x0B);LCD_WR_DATA(0x09);LCD_WR_DATA(0x07);LCD_WR_DATA(0x2F);LCD_WR_DATA(0x33);LCD_WR_DATA(0x47);LCD_WR_DATA(0x38);LCD_WR_DATA(0x15);LCD_WR_DATA(0x16);LCD_WR_DATA(0x2C);LCD_WR_DATA(0x32);LCD_WR_REG(0xF0);     LCD_WR_DATA(0x3C);   LCD_WR_REG(0xF0);     LCD_WR_DATA(0x69);   lcd_delay_us(120);LCD_WR_REG(0x21);     LCD_WR_REG(0x29); LCD_direction(USE_HORIZONTAL);LCD_Clear(DARKBLUE);
}/* End of this file */

2)lcd_spi.c 程序实现

#include "lcd_spi.h"#if !IO_SPI
#include "spi.h"
#endifvoid lcd_gpio_init(void)
{
#if IO_SPIGPIO_InitTypeDef GPIO_InitStruct = {0};/* GPIO Ports Clock Enable */__HAL_RCC_GPIOB_CLK_ENABLE();/*Configure GPIO pin Output Level */HAL_GPIO_WritePin(LCD_GPIO_PORT, lcd_sck_Pin|lcd_mosi_Pin|lcd_cs_Pin|lcd_rs_Pin|lcd_rst_Pin, GPIO_PIN_RESET);/*Configure GPIO pins : PBPin PBPin PBPin PBPinPBPin */GPIO_InitStruct.Pin = lcd_sck_Pin|lcd_mosi_Pin|lcd_cs_Pin|lcd_rs_Pin|lcd_rst_Pin;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(LCD_GPIO_PORT, &GPIO_InitStruct);/*Configure GPIO pin : PtPin */GPIO_InitStruct.Pin = lcd_miso_Pin;GPIO_InitStruct.Mode = GPIO_MODE_INPUT;GPIO_InitStruct.Pull = GPIO_NOPULL;HAL_GPIO_Init(lcd_miso_GPIO_Port, &GPIO_InitStruct);
#endif}void lcd_delay_us(uint32_t us)
{uint32_t i=0;while(us--){for(i=0;i<1000;i++);}
}void SPI_WriteByte(uint8_t Byte)
{
#if IO_SPIuint8_t i=0;for(i=0;i<8;i++){if(Byte&0x80){SPI_MOSI_SET;}else{SPI_MOSI_CLR;}SPI_SCLK_CLR;SPI_SCLK_SET;Byte<<=1;}
#elsehal_spi_writebyte( Byte );
#endif
} uint8_t SPI_ReadByte(void)
{
#if IO_SPIuint8_t value=0,i=0,byte=0xFF;for(i=0;i<8;i++){value<<=1;if(byte&0x80){SPI_MOSI_SET;}else{SPI_MOSI_CLR;}byte<<=1;SPI_SCLK_CLR;lcd_delay_us(100);if(SPI_MISO_READ){value += 1;}SPI_SCLK_SET;lcd_delay_us(100);}return value;
#elsereturn hal_spi_readbyte();
#endif
} 

3.3 测试程序实现

创建lcd_test.c文件,编写测试程序

 4 测试

在如下文件中调用测试程序,其主要实现每隔1s时间刷新屏幕的颜色。

详细代码:

void StartDefaultTask(void *argument)
{/* USER CODE BEGIN StartDefaultTask */int count;LCD_Init();LCD_Read_ID();/* Infinite loop */for(;;){osDelay(1);if(count%1000 == 0){lcd_test();}count++;}/* USER CODE END StartDefaultTask */
}

运行结果如下:

这篇关于使用SPI驱动串行LCD的驱动实现(STM32F4)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/982079

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal