【小红书采集软件】根据关键词批量爬取小红书笔记正文、笔记链接、发布时间、转评赞藏等

本文主要是介绍【小红书采集软件】根据关键词批量爬取小红书笔记正文、笔记链接、发布时间、转评赞藏等,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、背景介绍

1.1 爬取目标

熟悉我的小伙伴可能了解,我之前开发过2款软件:

【GUI软件】小红书搜索结果批量采集,支持多个关键词同时抓取!
【GUI软件】小红书详情数据批量采集,含笔记内容、转评赞藏等,支持多笔记同时采集!

现在介绍的这个软件,相当于以上2个软件的结合版,即根据关键词爬取笔记的详情数据。

开发界面软件的目的:方便不懂编程代码的小白用户使用,无需安装python,无需改代码,双击打开即用!

软件界面截图:软件运行界面

爬取结果截图:

结果截图1:结果截图1

结果截图2:结果截图2

结果截图3:结果截图3

以上。

1.2 演示视频

软件使用演示视频:(不懂编程的小白直接看视频,了解软件作用即可,无需看代码

【软件演示】爬小红书搜索详情软件

1.3 软件说明

几点重要说明:
软件说明

以上。

二、代码讲解

2.1 爬虫采集-搜索接口

首先,定义接口地址作为请求地址:

# 请求地址
url = 'https://edith.xiaohongshu.com/api/sns/web/v1/search/notes'

定义一个请求头,用于伪造浏览器:

# 请求头
h1 = {'Accept': 'application/json, text/plain, */*','Accept-Encoding': 'gzip, deflate, br','Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8,en-GB;q=0.7,en-US;q=0.6','Content-Type': 'application/json;charset=UTF-8','Cookie': '换成自己的cookie值','Origin': 'https://www.xiaohongshu.com','Referer': 'https://www.xiaohongshu.com/','Sec-Ch-Ua': '"Microsoft Edge";v="119", "Chromium";v="119", "Not?A_Brand";v="24"','Sec-Ch-Ua-Mobile': '?0','Sec-Ch-Ua-Platform': '"macOS"','Sec-Fetch-Dest': 'empty','Sec-Fetch-Mode': 'cors','Sec-Fetch-Site': 'same-site','User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0',
}

加上请求参数,告诉程序你的爬取条件是什么:

# 请求参数
post_data = {"keyword": search_keyword,"page": page,"page_size": 20,"search_id": v_search_id,"sort": v_sort,"note_type": v_note_type,"image_scenes": "FD_PRV_WEBP,FD_WM_WEBP",
}

2.2 爬虫采集-详情接口

首先,定义接口地址作为请求地址:

# 请求地址
url = 'https://edith.xiaohongshu.com/api/sns/web/v1/feed'

定义一个请求头,用于伪造浏览器:

# 请求头
h1 = {'Accept': 'application/json, text/plain, */*','Accept-Encoding': 'gzip, deflate, br','Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8,en-GB;q=0.7,en-US;q=0.6','Content-Type': 'application/json;charset=UTF-8','Cookie': '换成自己的cookie值','Origin': 'https://www.xiaohongshu.com','Referer': 'https://www.xiaohongshu.com/','Sec-Ch-Ua': '"Microsoft Edge";v="119", "Chromium";v="119", "Not?A_Brand";v="24"','Sec-Ch-Ua-Mobile': '?0','Sec-Ch-Ua-Platform': '"macOS"','Sec-Fetch-Dest': 'empty','Sec-Fetch-Mode': 'cors','Sec-Fetch-Site': 'same-site','User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0',
}

加上请求参数,告诉程序你的爬取条件是什么:

# 请求参数
post_data = {"source_note_id": note_id,"image_formats": ["jpg", "webp", "avif"],"extra": {"need_body_topic": "1"}
}

下面就是发送请求和接收数据:

# 发送请求
r = requests.post(url, headers=h1, data=data_json)
# 接收数据
json_data = r.json()

逐个解析字段数据,以"笔记标题"为例:

# 笔记标题
try:title = json_data['data']['items'][0]['note_card']['title']
except:title = ''

熟悉xhs的朋友都知道,有些笔记是没有标题的,所以这里加上try保护,防止程序报错导致中断运行。

其他字段同理,不再赘述。

下面就是发送请求和接收数据:

# 发送请求
r = requests.post(url, headers=h1, data=data_json.encode('utf8'))
print(r.status_code)
# 以json格式接收返回数据
json_data = r.json()

定义一些空列表,用于存放解析后字段数据:

# 定义空列表
note_id_list = []  # 笔记id
note_title_list = []  # 笔记标题
note_type_list = []  # 笔记类型
like_count_list = []  # 点赞数
user_id_list = []  # 用户id
user_name_list = []  # 用户昵称

循环解析字段数据,以"笔记标题"为例:

# 循环解析
for data in json_data['data']['items']:# 笔记标题try:note_title = data['note_card']['display_title']except:note_title = ''print('note_title:', note_title)note_title_list.append(note_title)

其他字段同理,不再赘述。

最后,是把数据保存到csv文件:

# 把数据保存到Dataframe
df = pd.DataFrame({'关键词': search_keyword,'页码': page,'笔记id': note_id_list,'笔记链接': ['https://www.xiaohongshu.com/explore/' + i for i in note_id_list],'笔记标题': note_title_list,'笔记类型': note_type_list,'点赞数': like_count_list,'用户id': user_id_list,'用户主页链接': ['https://www.xiaohongshu.com/user/profile/' + i for i in user_id_list],'用户昵称': user_name_list,}
)
if os.path.exists(result_file):header = False
else:header = True
# 把数据保存到csv文件
df.to_csv(result_file, mode='a+', index=False, header=header, encoding='utf_8_sig')

完整代码中,还含有:判断循环结束条件、js逆向解密、笔记类型(综合/视频图文)筛选、排序方式筛选(综合/最新/最热)等关键实现逻辑。

2.3 cookie说明

其中,cookie是个关键参数。
cookie里的a1和web_session获取方法,如下:查看a1和web_session

这两个值非常重要,软件界面需要填写!!

开发者模式的打开方法:页面空白处->右键->检查。

2.4 软件界面模块

主窗口部分:

# 创建主窗口
root = tk.Tk()
root.title('小红书搜索详情采集软件v1.0 | 马哥python说 |')
# 设置窗口大小
root.minsize(width=850, height=650)
输入控件部分:
# 搜索关键词
tk.Label(root, justify='left', text='搜索关键词:').place(x=30, y=160)
entry_kw = tk.Text(root, bg='#ffffff', width=60, height=2, )
entry_kw.place(x=125, y=160, anchor='nw')  # 摆放位置

底部版权部分:

# 版权信息
copyright = tk.Label(root, text='@马哥python说 All rights reserved.', font=('仿宋', 10), fg='grey')
copyright.place(x=290, y=625)

以上。

2.5 日志模块

好的日志功能,方便软件运行出问题后快速定位原因,修复bug。

核心代码:

def get_logger(self):self.logger = logging.getLogger(__name__)# 日志格式formatter = '[%(asctime)s-%(filename)s][%(funcName)s-%(lineno)d]--%(message)s'# 日志级别self.logger.setLevel(logging.DEBUG)# 控制台日志sh = logging.StreamHandler()log_formatter = logging.Formatter(formatter, datefmt='%Y-%m-%d %H:%M:%S')# info日志文件名info_file_name = time.strftime("%Y-%m-%d") + '.log'# 将其保存到特定目录,ap方法就是寻找项目根目录,该方法博主前期已经写好。case_dir = r'./logs/'info_handler = TimedRotatingFileHandler(filename=case_dir + info_file_name,when='MIDNIGHT',interval=1,backupCount=7,encoding='utf-8')

日志文件截图:日志文件

以上。

三、获取源码及软件

完整python源码及exe软件,微信公众号"老男孩的平凡之路“后台回复”爬小红书搜索详情软件"即可获取。点击直达

这篇关于【小红书采集软件】根据关键词批量爬取小红书笔记正文、笔记链接、发布时间、转评赞藏等的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/981689

相关文章

pandas批量拆分与合并Excel文件的实现示例

《pandas批量拆分与合并Excel文件的实现示例》本文介绍了Pandas中基于整数位置的iloc和基于标签的loc方法进行数据索引和切片的操作,并将大Excel文件拆分合并,具有一定的参考价值,感... 目录一、Pandas 进行索引和切编程片的iloc、loc方法二、Pandas批量拆分与合并Exce

MySQL 批量插入的原理和实战方法(快速提升大数据导入效率)

《MySQL批量插入的原理和实战方法(快速提升大数据导入效率)》在日常开发中,我们经常需要将大量数据批量插入到MySQL数据库中,本文将介绍批量插入的原理、实现方法,并结合Python和PyMySQ... 目录一、批量插入的优势二、mysql 表的创建示例三、python 实现批量插入1. 安装 PyMyS

Python实现Word文档自动化的操作大全(批量生成、模板填充与内容修改)

《Python实现Word文档自动化的操作大全(批量生成、模板填充与内容修改)》在职场中,Word文档是公认的好伙伴,但你有没有被它折磨过?批量生成合同、制作报告以及发放证书/通知等等,这些重复、低效... 目录重复性文档制作,手动填充模板,效率低下还易错1.python-docx入门:Word文档的“瑞士

Ubuntu向多台主机批量传输文件的流程步骤

《Ubuntu向多台主机批量传输文件的流程步骤》:本文主要介绍在Ubuntu中批量传输文件到多台主机的方法,需确保主机互通、用户名密码统一及端口开放,通过安装sshpass工具,准备包含目标主机信... 目录Ubuntu 向多台主机批量传输文件1.安装 sshpass2.准备主机列表文件3.创建一个批处理脚

java时区时间转为UTC的代码示例和详细解释

《java时区时间转为UTC的代码示例和详细解释》作为一名经验丰富的开发者,我经常被问到如何将Java中的时间转换为UTC时间,:本文主要介绍java时区时间转为UTC的代码示例和详细解释,文中通... 目录前言步骤一:导入必要的Java包步骤二:获取指定时区的时间步骤三:将指定时区的时间转换为UTC时间步

MySQL批量替换数据库字符集的实用方法(附详细代码)

《MySQL批量替换数据库字符集的实用方法(附详细代码)》当需要修改数据库编码和字符集时,通常需要对其下属的所有表及表中所有字段进行修改,下面:本文主要介绍MySQL批量替换数据库字符集的实用方法... 目录前言为什么要批量修改字符集?整体脚本脚本逻辑解析1. 设置目标参数2. 生成修改表默认字符集的语句3

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函